


2. 2- MACs

Message Authentication Code

Eciently computable function M: 90 , 13 x 90. 13
*
- 90, 13"

,
written MCK, m) = t

K is the key ; i is the message :
t is the tag .

Provides data integrity and data origin authentication

No confidentiality or non-repudiation .

Security

· An adversary knows everything except the value of K
.

· A MAC scheme is secure if it is existentially unforgeable against chosen-message attack
.

Generic Attacks

Guess the MAC of m

Exhaustively search the keyspace .

MACs based on hash functions

Secret prefix : H(K1m) - insecure

Secret Suffix : H(mIlk) - insecure

Envelop: H(K1m1)K) - seare if MAC with m padded to a multiple of the block length of H

PKDF2

·key derivation function

Supposed to be slow

larger iteration -> more security , slower performance



Pseudorandom generator

A deterministic function PRF : 90 . 13"-> 90 . 13
/ I

random random-lookingseed
binary string

Pseudorandom function

·A deterministic function PRF: 90 , 13 x 90 . 13
*

- So ,
13

-I I
random non-secret random-lookingseed label binary string.

Key Derivation Function

·A deterministic function KDF : 90 , 13 "x 90, 13
*
- So, 13 '

/ / I
random non-secret

seed label
random-looking
binary string

·Difference between KDF and PRF :

↳ KDE output should be indistinguishable from random even if the key k is non-random but has high entropy

Authenticated encryption

Use separate keys for authentication and encryption

Use separate keys for each party

Create keys with KDEs

Encrypt-and-MAC (E&M)

Compute a= Enc(m) and t= MACCm)
,

Transmit clIt .

Not secure. MAC does not ensure confidentiality .



MAC-then-encrypt (MtE)

Compute += MAC(m) and c = Enc(mIlt)
.

Transmit c.

Not secure
. SKES does not ensure integrity.

Encrypt then - MAC (EtM)

c = Enc(m) ,
t= MACCm)

,
transmit clIt

.

Secure if SKES and MAC are both secure .

AES-GOM

· Performs authentication and encryption

Authentication is significantly faster than encryption

Encryption and decryption can be parallelized.



2. 3-Password Security·

Entropy

Entropy measures the uncertainty in values generated from a random process

If a password is chosen uniformly at random from a set of size 2" then its entropy is a bits ,

and requires around en-1 guesses on average to find it
.

Less uncertainty -> Lower entropy , easier to guess.

Hashes for Login

Advantages :

irreversible transformation to passwords .

almost no overhead for storage and login

· Disadvantages:

- We cannot recover passwords

Attack creates a table of hashes to compare against database

Hashing is deterministic
.

-> If passwords are the same then hashes are the same.

Hash table : a table containing hashes of many/all possible passwords.

Rainbow table : an example of a time-space tradeoff using hash chains
.

↳ only works if the database stores the hash of the password H(password)

Salting

sating protects against rainbow tables

salting makes brute-force attack harder
.

Password Hardening Function

Computation of hash is not slowed down by a lot

Brute-force attack slows down by a factorof
# iterations



3
. 1 - Public Kay Overview

Key Establishment

Method 1 : Point-to-point key distribution
.

This is generally not practical for large-scale applications .

Method 2: Use a Trusted Third Party (TTP) T

A B

r 2
. EKATCK 1

1 . Request 3 . ExB(k)
A, B ~ T

Drawbacks :

1 .
The TTP must be unconditionally trusted

2
.

The TTP is an attractive target

3
.
The TIP must be online

.

Key Pair Generation

Each entity A generates (PA , SAS

SA is A's secret key

·PA is A's public key.

It should be infeasible for an adversary to recover Sa from PA
.

Publi Key Encryption

To encrypt a secret message m for Bob,
Alice

1
.

Obtain an authentic copy of PB
.

2
. Compute C= ECPr

,
m)

encryption
3

. Send c to Bob
.

To decrypt c.
Bob computes m = D(SB

, c)

decryption



Advantages of PKES

No requirement for a secured channel

Each user has only , key pair -> better for key management.

·A signed message can be verified by anyone non-repudiation

Disadvantage of PKES

PKES are much slower than SKES .



3.2-RSA Encryption

RSA Encryption Scheme

key generation :

:
. Choose random primes p and g with logap = logag : 1/2 usually =2048

2 Compute n = pq and P(n) = (p - 1) (q-1)

3
. Choose an integer e with 1 <e<P(n) ,

with gcd(e , plus) = 1

4 Compute a= e"mod b(n) .

The public key is (n. e) and private key is (n
,
d)

Message Space: M= C= 2n
*

= 3 me2 : 0- m < n and gad(on,
n) = 13

Encryption : S((n . e)
, m) = me modn

Pecryption : D((n, d) , c) = c
& modh

Note: all is defined in In if and only if gad(bin)=1 .

Correctness of RSA

Let (n. e) be an RSA public key with private key (n
,
d)

.

Then

P((n, d) , E(2n , e) ,
m1) =

m

for all me Xn such that god(m, n)=1
.

Basic Modular Operations

Addition: 0(1)

Subtraction : O(I)

Multiplication: OCLY
Inversion: 0(

Exponentiation : Oll) * square-and-multiply ,
at most (squaring and at most additions



3
.
3 Diffie-Hellman Key Exchange

Key Establishment Problem

Possible Solutions :

1
.

Use public-key cryptography which does not require shared secret keys

2 Use a key-exchange protocol , specifically designed to establish shared secrets from scratch
.

Definition

The order of an element x- Xn
*

is defined to be the smallest positive integer t such that x
*

=1 in 2n*.

An element of Int is a generator if it has the maximum possible order
.

Diffie-Hellman Key Exchange

A : Pick a -> 2g . Compute and send ga .

Receive gb and compute (gb)a = gab

B: Pick b - Ya, Compute and send gb .

Receive g" and compute (ga)" = gab

The shared secret is gab

Diffie-Hellman vs
.

RSA

Diffie-Hellman

·key exchange only : no arbitrary messages

Interactive : must be online simultaneously

Forward secrecy
: cannot compromise past or future key exchanges even if one key exchange compromised.

RSA

Public-key cryptosystem : can exchange any message chosen by the sender
.

Non-interactive : can decrypt encrypted message later

No forward secrecy
: a compromised private key compromises all past and future ciphertexts.



Elgamal

Key generation :

Choose xtm2a, pk= g modp and sk=X

Encryption :

BH shared secret

Given me 2p* , compute E(m) = /gr , myr) modp

Decryption :

· Given a ciphertext (c
, c) -(2p

*)
, compute D(c.. c) = (cit*. C2 modp

Note : Elgamal is random
.



3
. 4 - Public Key Encryption Security·

Basic Assumption

Kerckhoff's Principle , Shannon's Maxim

The adversary knows everything about the algorithm , except the private key K
.

Adversary's Interaction

Passive attacks :

key-only attack

equivalent S Chosen-plaintext attack

Ciphertext - only attack

Active attacks :

Chosen-ciphertext attack

strongest-
·Adaptive chosen-ciphertext attack :

iteratively choose which ciphertexts to decrypt ,
based on the results of previous queries .

Adversary's God

Possible goals

Total break: determine the private key (totally insecure)

· Decrypt a given ciphertext lone-way insecure)

Learn some partial information (semantically insecure)



Security of RSA

RSA is totally insecure if integer factorization is easy

RSA is one-way secure if the RSA problem is hard

RSA is not semantically secure under a ciphertext-only attack

· Let c= me mod n

If c= 1
,
then m= 1

If 241 then m+

Why? Because RSA is deterministic and correct
.

Semantic Security

A deterministic encryption algorithm cannot yield semantic security.

Given a ciphertext c
= Ex(m)

Choose m' and compute c = Ex(m)

If c = < then m = m
,

otherwise m'Fm .

A randomized algorithm avoids this problem ·

Even with c = Epk(m) and c
= Epk (m)

, typically 2 = c
.



3
.5-Hybrid Encryption

Symmetric vs. Public

Symmetric :

· Fast

· Any bitstring of the right length is a valid key

Any bitstring of the right length is a valid plaintext ,

· Typical attack speed = 2"operations where I is the key length.

Public

·Slow

keys have a special structure - not every bitstring of the right length is the key.

Not every bitstring of the right length is a valid plaintext.

· Typical attack speed 2 operations where I is the key length

Hybrid Encryption

1. Use PKES to encrypt shared secret key.

2. Use SKES with the shared secret key to encrypt messages.

Pros and Cons

Advantages

key management is the same as PKES

Performance is close to SKES

security often improves

Disadvantages

Attack surface increases



Basic Hybrid Encryption

· Let (g ,
2

, b) be a PKES

·Let (E
,
D) be a SKES with +-bit keys.

Let (pK , sk) be a public/private key pair

Let i be a message

Choose Ke So
, 13 at random

,
and compute and send (c , (2):

E a = E(pK , k) encrypt symmetric key K using pK
c = E(k, m) encrypt message using K

.

Improvement (

Hash the key k before using it .

Encryption :

E s m s

Decryption:

m = D(H(D(sk, ci)) , (2)

Improvement 2

Example: Elgamal with a MAC

Encryption: choose r at random

(k
,

(2) = H(gar)
c = E(K

,
m)

t = MAC(k2
. c)

Send (g ,
c , t

grc t

Decryption : Given (C
, C .

(3)

(i
,
(2) = H(c, 4)
I = MAC(k2

, ()
m = D(k

,
(2)

Check I = C3 ? If true return in ,
else reject



Diffie-Hellman Integrated Encryption Scheme (PHIES)

·BHIES is IND-CCA2
, assuming

- SKES is IND-CPA

· MAC is secure (EUF-CMA)

It is a random orade

·DH problem is intractable

Improvement 3

Instead of a MAC , a simple hash check is enough.

Encryption : For me So1 3
*

S
c = E(pk , k)
C = ECH, (k) , m)
C3 = He(m , k)

Decryption : Given (c , G, (3)

k = D(sk
, (i)

m = D(H. (k)
,

(2)

Check Halm , 1) = C ? If true then return in
,

else reject

Requirements:

·PKES is ow-CPA

· SKES is IND-CPA

H, and He are random oracles.



3 .6-Elliptic Curve Cryptography

Elliptic curve cryptography

Use the points on an elliptic curve of the form y
=

x+ ax+ b to create a group,
then do Diffe-Hellman

.

Group of points

For any elliptic curve E: y= xs+ ax+b
,

the set

~identity element

[(x , y) = y2 = x+ ax +b3W90]

forms a group under the operation of point addition
.

Point addition

Let P and & be elements of elliptic arve group

· If Q : 0
,

then P+Q = P

· If P = 0 ,
then P+Q = Q

Q =
-P
-

· If Xp = Na and Yp=-ya ,
then P+Q= 0

Otherwise use the formula

Elliptic curve Difie-Hellman

We write px= xP= P+P "scalar multiplication"

x occurrences of P

· A picks xtmq and sends P->E to B.

· B picks yeR&q and sends yptE to A
.

Both compute x(yP) = y(xP) = xyP - E
.

·Use double-and-add Canalog for square-and-multiply)



3 .8-Digital Signature

RSA Signature

key generation : pk= (n . e) ,
sk= (n, d) like in RSA

signature generation : To sign a message m
,

1 . Compute = and mod n

2. The signature on m iss
.

Signature verification : To verify son m
.

1 . Obtain an authentic copy of the public key (n.
e)

2. Compute se modn

3
. Accept iff smod u = m

.

Correctness Requirement

For a given key pair (p1 , sk) produced by G
.

Ver(pK ,
m

, Sign(sk
, m1) : true

for all meM
.

Security - Adversary's Goals

strong
1 1

.

Total break : Recover the private key ,
or systematically forge signatures

I 2
.

Selective forgery : Given a message or a subset of messages , forge a signature for these messages.

weak
3

.

Existential forgery : Forge a signature for some message.



Attack Model

1 . Key-only attack :

The public key is known

2. known-message attack : some messages and their valid signature are known

3
.

Chosen- message attack : May choose some messages and obtain their signature <strongest

Malleability of Basic RSA Function

Given c = me mod n ,
for any xeIn*, we can construct encrypting mx by

c = x . cmodn

Digital Signature Summary

Public key primitive providing data integrity ,
data origin authentication ,

and non-repudiation.

Security good : existential unforgeability against chosen-message attacks .



4. 1 - Key Management

Public Key Distribution Problem

Man-in-the-middle who replaces public keys can decrypt.

Public Key Distribution

· directly from subject .

· from a friend/friend of a friend ("Web of trust")

· from a public directory (PAG key server
, "public key infrastructure")

Web of Trust

Advantages
·simple
· free
works well for a small number of users

Disadvantages
relies on human judgement
doesn't scale to large number of parties
not appropriate for trust sensitive areas

Certificates and certificate authorities:

Relies on trusted authorities (called certificate authorities) to rouch that public keys belong to certain subjects .

Certificate : an assertion by a 3rd party that a particular key belongs to a particular entity.

· A digital certificate contains :

-subject identity
subject's public key
validity perbd
the issuer's digital signature .

Certificate generation :

1 .

Obtain subject's public key

2
. Verifying that the subject's identity.

3
. Signing (using the CA's private key) the subject's public key and name.



Certificate revocation mechanisms

Certificate Revocation Lists (CRLs)

Each CA can publish a file containg a list of certificates that have been revoked

CRL address often included in certificate
.

Online Certificate Status Protocol .

· An online service run by a CA to check in real-time if a certificate has been revoked
.

· Not widely implemented

Compromises user privacy.

Public Key Infrastructure

A set of systems for managing digital certificates
.

Obtaining Public Key

Alice needs Bob's public key

1
. Alice obtains CertBob

2 .

Alice checks that the identity in CertBob

3 . Alice verifies CA's signature on Centsob using CA.s public key .

It provides confidentiality and integrity if

· CA checks the identity before issuing.

A does not issue fraudulent certificates

Alice is certain of the CA's public key .



4
.
2 TLS and SSH

TLS

Transport Layer Security is a cryptographic tool that operates above the transport layer to

provide security services to applications .

TLS Security Goals

Provides authentication based on public key certificates
.

-server-to-client (always)
-client-to-server (optional)

· Provides confidentiality and integrity of message transmission
.

TLS Handshake Protocol

Authentication
:

ensures that the connection really is with the server.

-typically uses X
. 509 certificates

TLS Key Exchange

1
.

RSA

no forward security

not permitted in TLS 1 . 3

2 . Ephemeral Pifie-Hellman .

has forward security

only permitted method in TLS 1 . 3
.



TLS Security

Ts provides

server-to-client authentication

client-to-server authentication (optionall

confidential communication with integrity and replay protection

TLS doesn't provide

hide source/destination

hide length information

password-based authentication

stop denial of service attacks
.

Forward Secrecy

An adversary who later learns the server's long-term private key is not able to read previous transmissions
.

Signed DH key exchange provides forward secrecy.



SSH protocol

Provides public key authentication of server to dients and encrypted communications

Runs over TCP,

SSH Security Goals

Message Confidentiality - achieved using encryption

· Message Integrity - achieved using MAC.

Message Replay Protection - achieved using counters and integrity protection

Peer Authentication : server-to-dient auth
, client-to-server auth

Server authentication in SSH

Based on public key digital signatures .

Unlike TLS , (typically) does not use certificates
, just a raw public key Chashed)



4
.

3 - Signal

Signal Goals

1
. Long-lived sessions

.

The session lasts until events such as app reinstall or device change.

2
. Asynchronous setting .

We can send message even if one party is offline
.

3
. Fresh session keys .

Each message is encrypted/authenticated with a fresh session key.

4. Immediate decryption .

5
. End-to-end encryption

6. Forward secrecy.

7
. Post-compromise security Parties recover from a state compromise

Forward Secrecy "Symmetric rachet"

Suppose Alice and Bob share a secret key K
.

k
<KDF

k,

KDF
k

c
KDE

k3
S

W W W

mk,
mkz mks

keys are deleted as soon as they are no longer needed
·

Given ki and Uki , an adversary can compute kit , mkitt
, kitz ,

Inkitz
.....

but not kit
,
mki-

.....



Post Compromise Secrecy "asymmetric rachet"

Suppose Alice and Bob share a secret key K
.

·A fresh ECDH is used each time the KDF is applied ·

DHo Dri PH2

> 3 Sk
>
KDF

k,

KDF
ke

> KDE

k5
> PHi= ECPH (Xi, Yi)

W W W

mk,
mkz mks

·Given ki and mki
, an adversary cannot compute kin , mkins

,
kina, mkina , .... or Kitt

,
mkits

, kitz,
mkitz

, ...

Message Transmission

Each party maintains 3 key chains :

1 .
A root key chain

2.

A sending key chain

3
. A receiving key chain .



4. 4 - Bitcoin
.

Security properties

For the payer :

Payer anonimity during payment

· Payer untracability.

Others cannot tell whose coins are used in a particular payment

For the payee:

Unforgeable coins
. Forging valid looking coins should be infeasible

No double-spending.
A coin cannot be used more than once .

Basic Ideas

Use public key for names

· Use transaction references for accounts

· Use digital signature to demonstrate ownership of currency.

Distributed ledger : incentivize community to maintain

Transaction

Input : transaction Output
>

address address
public key signature value 3 BTC value 1 . 5 BTC

&
-

I ↑ I I
ECDSA public signature of
verification key transaction using recipient address make change
used in address corresponding RIPEMD(SHA-256 (pK))
from previous private key
transaction



Block and Blockchain

Block : header + a list of transactions

Blockchain : a sequence of blocks : a ledger of transactions
.

· Blockchains form a tree: Only the longest chain is considered to be valid by the community.

·Motivation: Whoever constructs the block includes one transaction paying themselves 6
.
25 BTC . "mining"

Everyone is motivated on a single public ledger.

The miners are trying to construct a block header where

HCH (block header /I solution() - difficulty target

Cryptographic ingredients

Hash functions (SHA-256 , RIPEMD-160)

Cryptographic puzzles (Hashcash with SHA-256)

· ECDSA



4.

5 Zero-Proof knowledge

Basic Idea

A wants to prove to B that A knows something,
without disclosing any information to B

.

Commit - Challenge - Response

1 .

A generates a commitment and sends it to B

2
.

B generates a challenge and sends it to A

3
.

A generates a response and sends it to B

4 B verifies the response .

Zero knowledge

·B "learns nothing" if B could have generated all of the values he received on his own.

i.
e

.,
there exist a simulator that outputs transcripts that are indistinguishable from real transcripts.

B has to generate them in a different order .

Honest Execution
.

1 .

Generate commitment

e
.

Receive challenge

3. Generate response

Simulator

1
. Pick challenge

2. Generate response

3. Retroactively compute commitment .

Order matters
.

A has to make a commitment H that will work for any challenge.

The simulator can retroactively build the commitment to work for one particular challenge



Non-interactive proofs

If prover can pick commitment after challenge ,
then it's possible to fool the verifier

.

Idea: challenge = hash of commitment

secure assuming the hash is a random function
.


