
So far our only values have been numbers, abbreviated Num in contracts
We've identified several subtypes: Int for integers and Nat for natural numbers

The literal representations of Booleans, Symbols and Strings:
Boolean: true, false•
Symbol: a "word" that begins with a single quote such as 'earth or 'female•
String: characters (other than ") surrounded by double-quotes: "This is a string"•

A literal is the way you write something down.
E.g. The literal for the number seven is 7.

Values
Saturday, September 12, 2020 20:26

 Module 4 Simple Data Page 1

Boolean-valued functions
A function that tests whether two numbers x and y are equal has two
possible Boolean values: true and false.

•

An example application: (= x y)•
This is equivalent to determining whether the mathematical
proposition "x=y" is true or false.

•

Standard Racket uses #t and #true for true, and similarly, #f and #false
for false.

•

Note: You should always use true and false•
The sample application will give an error unless x and y have been
defined.

•

Other types of comparisons
(< x y)•
(> x y)•
(<= x y)•
(>= x y)•
Comparisons are functions which consume two numbers and produce
a Boolean value.

•

A sample contract:•

Complex relationships
and, or and not are used to test complex relationships.•
Example: "3 <= x < 7" is represented as •

and and or are actually special forms, like define. They look like
functions but actually are not because their arguments are not
evaluated before the "function" is applied

•

Computational differences
The mathematical AND and OR connect two propositions•
In Racket, and and or may have more than two arguments•
and has value true exactly when all of its arguments have value true•
or has value true exactly when at least one of its arguments has value
true

•

not has value true exactly when its one argument has value false•

Booleans
Saturday, September 12, 2020 20:37

 Module 4 Simple Data Page 2

not has value true exactly when its one argument has value false•

Short-circuit evaluation
DrRacket only evaluates as many arguments of and and or as is
necessary to determine the value.

•

Examples:

In the second example above, once the (= delta-x 0) is evaluated to be
true, the function will output true and stop since or only needs one true
value

•

In the third example above, once the (= delta-x 0) is evaluated to be
true, the function will output false and stop since and stops evaluating
once there is a false value

•

This practice is sometimes called short circuiting•

Predicates
A predicate is a function that produces a Boolean result.•
Some built-in predicates in Racket: even?, negative? and zero?•
Examples of user-defined functions:•

Predicate names ending with a question mark is a convention •

 Module 4 Simple Data Page 3

Conditional expressions
In Racket, we can computer |x| with the conditional expression:•

Conditional expressions use the special form cond.•
Each argument is a question/answer pair.•
The question is a Boolean expression.•
The answer is a possible value of the conditional expression.•
Square brackets are used by convention, for readability.•
abs is a built-in function in Racket.•
Properly nested brackets: [()]. •
Improperly nested brackets: [(]] or [(]).•
Here is a function my-abs because Racket won't let us redefine the
built-in function.

•

General form
The general form of a conditional expression is:•

The questions are evaluated in top-to-bottom order•
As soon as one question is evaluated to true, no further questions are
evaluated

•

Only one answer is ever evaluated•
An error is produced if no question evaluates to true•

Example

Conditionals
Saturday, September 12, 2020 22:14

 Module 4 Simple Data Page 4

Simplifying conditional expressions
Sometimes a question can be simplified by knowing that if it is asked,
all previous questions have evaluated to false

•

Example:•

The code shown is a straight-forward and correct implementation of
the conditions.

•

But when (>= grade 40) is evaluated in the second question/answer
pair, we already know that grade is at least 40.

•

Because of Racket's top-to-bottom evaluation of a cond, the function
will output 'CS115 and stop if the grade is less than 40.

•

Similarly, we cannot reach the third question/answer pair unless the
grade is at least 50.

•

Simplifying three of the tests:•

 Module 4 Simple Data Page 5

Tests for conditional expressions
Write at least one test for each possible answer in the expression•
Should be simple and direct, aimed at testing that answer•
When the problem contains boundary conditions (like the cut-off between passing and
failing), they should be tested explicitly

•

Example:•

There are four intervals and three boundary points, so seven tests are required
For instance, 30, 40, 45, 50, 55, 60, 70

Testing and and or
Consider•

We need:
one test case where dx is zero (first argument is true; second is not evaluated) ○

one test case where dx is nonzero and dy/dx >= 1 (first false; second true)○

one test case where dx is nonzero and y/x < 1 (both false)○

•

More generally,
or: enough tests to make the expression true for each clause and one that makes the
entire expression false

○

and: enough tests to make the expression false for each clause and one that makes
the entire expression true

○

•

Closed-box vs. Open-box testing
Closed-box tests are some of the tests, including the examples, that have been defined
before the body of the function was written

•

Open-box tests may depend on the code, for example, to check specific answers in
conditional expressions

•

Both types of tests are important•

Note: use check-expect for all tests

Tests
Monday, September 14, 2020 10:47

 Module 4 Simple Data Page 6

The "piecewise linear" nature of the graph complicates the computation of tax payable.
One way to do it uses the breakpoints (x-value or salary when the rate changes) and base
amounts (y-value or tax payable at breakpoints).

Examples:

Definition header & contract

Example
Monday, September 14, 2020 17:08

 Module 4 Simple Data Page 7

Finalize purpose

Some constants will be useful. Put these before the purpose and other design recipe elements.

Instead of putting the base amounts into the programs as numbers, we can compute them from the
breakpoints and rates

Developing tax-payable

At least 9 tests are needed for the preceding code (5 intervals and 4 boundaries)

Helper functions
There are many similar calculations in the tax program, leading to the definition of the following
helper function:

•

 Module 4 Simple Data Page 8

tax-payable with a helper function•

Helper functions are used for three purposes
Reduce repeated code, sometimes referred to as "DRY", "Don't Repeat Yourself". Being DRY
reduces the amount of code you need to write, debug and maintain

•

Factor out complex calculations, giving a separate function that is usually easier to test•
Give names to operations. Having meaningful names in the code also helps with chunking
things.

•

Style guidelines:
Improve clarity with short definitions using well-chosen names•
Name all functions (including helpers) meaningfully; not "helper"•
Purpose, contract and one example are required•

 Module 4 Simple Data Page 9

Symbolic data
Racket allows one to define and use symbols with meaning to us•
A symbol is defined using an apostrophe: 'CS115•
'CS115 is a value just like 0 or 115, but is more limited computationally•
Symbols allow a programmer to avoid using constants to represent
names

•

Symbols can be compared using the predicate symbol=?•

The contract for symbol=? is Sym Sym -> Bool. It consumes two
symbols and produces a Boolean result

•

Unlike numbers, symbols are self-documenting. You don't need to
define constants for them

•

Characters
A character is most commonly a printed letter, digit, or punctuation
symbol

•

a, G, ., + and 8 are all characters•
Other characters represent less visible things like a tab or a newline in
text

•

They are the simplest component of a string•

Strings
Strings are sequences of characters between double quotes•
Differences between strings and symbols

Strings are compound data (a sequence of characters)○

Symbols cannot have certain characters in them (such as spaces)○

More efficient to compare two symbols than two strings○

More built-in functions for strings○

•

A few functions which operate on strings:•

Symbols vs. strings
Use symbols when a small, fixed number of labels are needed (e.g. •

Other data
Wednesday, September 16, 2020 9:39

 Module 4 Simple Data Page 10

Use symbols when a small, fixed number of labels are needed (e.g.
planets) and comparing labels for equality is all that is needed.

•

Use strings when the set of values is more indeterminate (e.g. names
of students) or when more computation is needed (e.g. comparison in
alphabetical order)

•

When these types appear in contracts, they should be capitalized and
abbreviated: Sym and Str

•

Symbols are like multiple choice. Strings are like short answer•

General equality testing
Every type seen so far has an equality predicate (= for numbers,
symbol=? for symbols, string=? for strings)

•

The predicate equal? has a contract of Any Any -> Bool. It can be used
to test the equality of two values which may or may not be of the same
type.

•

equal? works for all types of data we have seen so far (except inexact
numbers)

•

(symbol=? 'blue 100) breaks the contract so it will produce an error•
(equal? 'blue 100) will produce false•
Do not overuse equal? Use = for numbers, symbols=? for symbols and
strings=? for strings.

•

 Module 4 Simple Data Page 11

Modelling programming languages
A program has a precise meaning and effect. •
If you run a program multiple times with exactly the same inputs, it better do the
same thing every time

•

A model of a programming language provides a way of describing the meaning
of a program.

•

It provides a way of understanding something, in this case a program.•
It is not necessarily the way DrRacket will execute the program, but it provides a
way to predict the result that is easier for humans to understand than the
internals of DrRacket

•

Modelling
Wednesday, September 16, 2020 10:49

 Module 5 Semantics Page 12

Spelling rules for Beginning Student
Identifiers are the names of constants, parameters and user-defined
functions.

•

They are made up of
letters○

hyphens○

underscores○

a few other punctuation marks○

at least one non-number○

•

They can't contain spaces or any of these: () [] { } , ; ' ' " "•
Symbols start with a single quote ' followed by something obeying the
rules for identifiers.

•

Spelling
Wednesday, September 16, 2020 11:23

 Module 5 Semantics Page 13

Syntax, semantics and ambiguity:

There are three problems we need to address:
Syntax: The way we're allowed to say things1.
Semantics: the meaning of what we say2.
Ambiguity: valid sentences have exactly on meaning3.

In Racket, we need rules that always avoid these problems

Grammars
We can use grammars to enforce syntax and avoid ambiguity•
For example, an English sentence can be made up of a subject, verb
and object, in that order.

•

We might express this as follows•

The textbook describes function definitions like this•

The Help Desk presents the same idea as•

Semantics intro
Wednesday, September 16, 2020 11:41

 Module 5 Semantics Page 14

Racket's semantic model
A semantic model of a programming language provides a method of predicting the result of
running any program

•

Our model will repeatedly simplify the program via substitution•
A substitution step finds the leftmost subexpression eligible for rewriting•
Every substitution step yields a valid program in full Racket, until all that remains is a
sequence of definitions and values

•

Application of built-in functions
We reuse the rules for the arithmetic expressions we are familiar with to substitute the
appropriate value for expressions like (+ 3 5) and (expt 2 10)

•

Formally, the substitution rule is•

Essentially, the rule says that we just "know" what the built-in functions do from early grade
school or by reading the DrRacket documentation

•

Ellipses

Application of user-defined functions
Any argument which is not a value must first be simplified to a value using the rules for
expressions

•

We cannot claim to just "know" what a user-defined function does, so we need a new rule•
The general substitution rule is:•

Note: we are using a pattern ellipsis in the rules for both built-in and user-defined functions
to indicate several arguments

•

Semantic model
Wednesday, September 16, 2020 12:14

 Module 5 Semantics Page 15

to indicate several arguments
•

Example:
A Racket program is read top-to-bottom, left-to-right. That is,•

is read as

Evaluating (foo 1 2) means substituting the first argument (1) wherever the first parameter
(x) occurs in the body expression and doing similarly for the second argument/parameter.

•

The expression we get (+ 1 1 2) will be substituted back in place of (foo 1 2)•

Recall that => means "yields" and separates one substitution step from another•

Another Example:

Constant definition
A constant definition binds a name (the constant) to a value (the value of the expression)•
We add the substitution rule:•

Function definitions are always in simplest form and not further reduced, not always the
case with constant definitions

•

If the expression starts as (define p (* 3 3)) the (* 3 3) must be simplified to 9 first•

Example

 Module 5 Semantics Page 16

Example

Substitution in cond expressions
There are three rules: when the first expression is false, when it is true and when it is else•

These suffice to simplify any cond expression•
Here the ellipses are serving a different role. They are showing an omission. The first rule
just says "Whatever else appeared after the [false exp], you copy it over"

•

Rule #2 - choose the leftmost subexpression to simplify•
It means that the question part of a cond's question/answer pair will always to be reduced to
either true or false before we apply one of the three rules for cond

•

cond is a special form. The arguments are not necessarily evaluated. In this case the
question argument is evaluated but the answer argument is not

•

Example:

If y is not defined:

 Module 5 Semantics Page 17

If y is not defined:

•

DrRacket's rules differ. It scans the entire cond expression before it starts, notes that y is not
defined, and shows an error.

Errors
A syntax error occurs when a sentence cannot be interpreted using the grammar. It occurs
in the Read phase of REPL. Some examples are:

misspellings○

missing parentheses○

invalid function applications○

•

Example: (10 + 1)
A run-time error occurs when an expression cannot be reduced to a value by application of
our evaluation rules. It occurs during the Evaluation phase of REPL.

•

Some examples are:
division by zero○

a cond with no question that returns true○

running out of memory○

Example:

Substitution rules for and and or
The simplification rules we use for Boolean expressions involving and and or are different
from the ones the Stepper in DrRacket uses

•

The end result is the same, but the intermediate steps are different•
The rules:•

 Module 5 Semantics Page 18

Substitution rules (so far)

Summary
Doing a step-by-step reduction according to these rules is called tracing a program•
It is an important skill in any programming language or computational system•

 Module 5 Semantics Page 19

Introducing lists
A list is a recursive structure - it is defined in terms of a smaller list.•
Consider a list of concerts:

A list of 4 concerts is a concert followed by a list of 3 concerts○

A list of 3 concerts is a concert followed by a list of 2 concerts○

A list of 2 concerts is a concert followed by a list of 1 concerts○

A list of 1 concerts is a concert followed by a list of 0 concerts○

•

A list of zero concerts is special. We call it the empty list. It is represented in
Racket by empty.

•

In general, a list of n items is an item followed by a list of n-1 items. •

Examples:

Lists can be built up, one item at a time, with cons. The simplest list is the empty
list, signified by the value empty. Every list we build adds additional items to an
empty list.

•

Lists can be bound to constants. For example, concerts0 and concerts1•
The empty list is shown as a solid black bar. It appears at the end of every list.
Elements of a list are shown as boxes

•

Lists are typically drawn with empty on the right. The first item to be added will be
right beside it. The most recently added item will be on the left. This also matches
the order in which the Racket code is written

•

Lists may look like arrays but they are not. The computer can access the ith
element of arrays but cannot with lists. Lists are more restrictive but have other
advantages.

•

Lists Introduction
Friday, September 18, 2020 19:54

 Module 6 Lists Page 20

advantages.

Basic lists constructs
empty: a value representing an empty list•
(cons v lst): consumes a value and a list; produces a new, longer list•
(first lst): consumes a non-empty list; produces the first value•
(rest lst): consumes a non-empty list; produces the same list without the first value•
(empty? v): consumes a value; produces true if it is empty and false otherwise•
(cons? v): consumes a value; produces true if it is a cons value and false otherwise•
(lists? v): equivalent to (or (cons? v) (empty? v))•

Extracting values from a list

The primary tools for extracting values from a list are first and rest. They may be used
in combination to extract any value in the list.

Simple functions on lists

 Module 6 Lists Page 21

This function should handle any list of concerts, which includes the empty list•
Applying first to an empty list produces an error, so we need to test for the empty
list and handle it specially

•

Note that the examples make use of the “concerts” “a” and “b” to keep them more
concise

•

If a function produces a Boolean value it may be more natural to write the body as
a Boolean expression

•

A first attempt is to check if the first element of the list (first loc) is the same as the
second element, (first (rest loc))

•

If there are either zero or one concerts it fails when either first or rest is applied to
an empty list

•

The function makes use of short-circuit evaluation to avoid those errors. The order
of the arguments to and matters. The check for whether loc is empty must come
first

•

The four images at the bottom of the slide illustrate the four examples•

 Module 6 Lists Page 22

The four images at the bottom of the slide illustrate the four examples•

Contracts involving lists
What is the contract for (next-concert loc)?•
We could use "List" for loc•
However, we almost always need to answer the question "List of what? Numbers?
Strings? Any type?"

•

Notation in contracts
We will use (listof X) in contracts, where X may be replaced with any type.•
Examples:

(listof Str)○

(listof Num)○

(listof Bool)○

(listof Any)○

•

Replace X with the most appropriate type available•
(listof X) always includes the empty list, empty•
The left side of the contract should be as general as possible. If your function can
correctly process a list of numbers, use (listof Num) rather than (listof Int) or (listof
Nat)

•

The right side of the contract as specific as possible. If your function always
produces a natural number, use Nat in the contract rather than Int or Num

•

 Module 6 Lists Page 23

Values
List values are either

empty○

(cons v l) where v is any Racket value (including list values) and l is a list
value (which includes empty)

○

•

Note that values and expressions look very similar•

Racket list values are traditionally given using constructor notation - the same
notation we would use to construct value

•

Expressions
The following are valid expressions

(cons e1 e2) where e1 and e2 are expressions○

(first e1)○

(rest e1)○

(empty? e1)○

(cons? e1)○

(list? e1)○

•

The slide "Basic list constructs" specified that the function cons consumes any
value and a list value

•

Or contracts:
cons: Any (listof Any) -> (listof Any)○

first: (listof Any) -> Any (requires the list to be non-empty)○

...○

•

cons can also be provided by expressions. For example:•

This is a valid expression because (first (rest lst)) and (rest lst) are both valid
expressions

Substitution rules

Formalities
Tuesday, September 22, 2020 13:53

 Module 6 Lists Page 24

There is no substitution rule for cons because of its role in list values.
If we included it, it would be (cons a b) => (cons a b) where a is a value and b is a list

Data definitions and templates
The structure of a function often mirrors the structure of the data it consumes. As
we encounter more complex data types, we will find it useful to be precise about
their structures.

•

We will do this by developing data definitions•
We can even develop function templates based on the data definitions of the
values it consumes

•

List data definition
Informally: a list of strings is either empty, or consists of a first string followed by a
list of strings (the rest of the list)

•

This is a recursive data definition because the definition refers to itself in at least
one case.

•

A base case does not refer to itself•
We can generalize lists of strings to other types by using an X:•

Templates and data-directed design
The structure of a program often mirrors the structure of the data•
A template is a general framework within which we fill in specifics. It is derived
from a data definition

•

Template for processing a (listof X)

 Module 6 Lists Page 25

Template for processing a (listof X)

This is the template for a function consuming a (listof X) •
Its form parallels the data definition•

We start with the data definition for a
(listof X)

A function consuming a (listof X) will
need to distinguish between these
two cases

The ... represents a place to fill in
code specific to the problem

Because (rest lox) is of type (listof X),
we apply the same computation to it,
that is, we apply listof-X-template

 Module 6 Lists Page 26

Processing lists: how many concerts?

Three crucial questions to think about functions consuming a list
What does the function produce in the base case?○

What does the function do to the first element in a non-empty list?○

How does the function combine the value produced from the first element with
the value obtained by applying the function to the rest of the list?

○

•

This is a recursive function. It uses recursion•
A function is recursive when the body of the function involves an application of the
same function.

•

Processing lists
Wednesday, September 23, 2020 14:28

 Module 6 Lists Page 27

Condensed traces
The full trace contains too much detail, so we instead use a condensed trace of
the recursive function

•

It shows the important steps and skips over the trivial details•

Termination
It is important that our functions always terminate (stop running and produce an
answer)

•

Why does count-concerts always terminate?•
There are two conditions

Base case - produces 0 and immediately terminates○

Recursive case - applies count-concerts to a shorter list. Each recursive
application is to a shorter list, which must eventually become empty and
terminate

○

•

Thinking recursively
The similarity of recursion to induction suggests a way to develop recursive •

 Module 6 Lists Page 28

The similarity of recursion to induction suggests a way to develop recursive
functions

Get the base case right○

Assume that your function correctly solves a problem of size n (e.g. a list with
n items)

○

Figure out how to use that solution to solve a problem of size n+1○

•

 Module 6 Lists Page 29

Refining the (listof X) template
Sometimes, each X in a (listof X) may require further process•
Indicate with a template for X as a helper function•
We assume this generic data definition and template from now on•

Templates as generalizations
A template provides the basic shape of the code as suggested by the
data definition

•

Templates
Wednesday, September 23, 2020 21:09

 Module 6 Lists Page 30

Patterns of recursion
The list template has the property that the form of the code matches
the form of the data definition

•

This is called simple recursion•

Simple recursion
In simple recursion, every argument in a recursive function application
is either

unchanged○

one step closer to a base case according to the data definition○

•

In the first example, the only argument is one step closer to the base
(lst with the first element removed).

A list that is one item shorter is not "one step closer to the base
case" unless it is shorter because it is missing the first element.

○

Remove the second element does not count.○

•

The second example is like the first except there is an additional
parameter that is passed along unchanged. The count-string is an
example

•

In the third example, process is meant to capture doing something to
lst other than removing the first element.

•

In the fourth example, math-function applied to x indicates that x is
changed
In both cases, the function is no longer simple recursion

Patterns
Wednesday, September 23, 2020 21:15

 Module 6 Lists Page 31

Some built-in functions in Racket
In addition to the ones we’ve already covered (cons, first, rest, empty?,
cons?, list?), the useful ones are append, length, member?, remove,
and reverse.

•

Don’t use append, remove, and reverse until we introduce them.•
Functions that begin with ‘c’, end with ‘r’ and have a mixture of ‘a’s and
’d’s in between are historical relics from Lisp. An example is caddr.

•

The updated versions in Racket are first, second, third, etc. •
first is used A LOT. second … eighth are used only very occasionally.
However, at this point in the course you are only allowed to use first

•

Producing lists from lists
Consider negate-list, which consumes a list of numbers and produces
the same list with each number negated

•

What should the function produce in the base case?1.
This is answered by the first example.
What does the function do to the first element in a non-empty list?2.
In this case, negate it. We already have (first lon) to get the first
element. All we need to do is add (- ...) around it.
How does the function combine the value produced from the first
element with the value obtained by applying the function to the rest of
the list?

3.

In count-concerts we combined 1 and the recursive
application using +. To combine a value with a list, we use cons

Lists from lists
Wednesday, September 23, 2020 21:41

 Module 6 Lists Page 32

Non-empty lists
Some computations make sense only with a non-empty list (ne-listof
X). For example, finding the maximum of a list of numbers

•

A non-empty list of X (ne-listof X) is either
(cons X empty)○

(cons X (ne-listof X))○

•

 Module 6 Lists Page 33

Design recipe refinements
When we introduce new types, we need to include it in the design
recipe

•

For each new type, place the following someplace between the top of
the program and the first place the new type is used

The data definition○

The template derived from that data definition○

•

Assignments do not need to include the data definition or template for
(listof X)

•

(ne-listof X) and other types should be included in assignments, unless
the assignment states otherwise

•

Summary: Data definition and template
Every data definition will have a name (e.g. (listof X)) that can be used
in contracts

•

In a self-referential data definition
at least one clause will use the definition's name to show how to
build a larger version of the data (recursive case)

○

at least one clause must not use the definition's name (base case)○

•

The template follows directly from the data definition•
The overall shape of a self-referential template will be a cond
expression with one clause for each clause in the data definition

•

Self-referential data definition clauses lead to recursive expressions in
the template

•

Base case clauses will not lead to recursion•

Design Recipe Refine
Wednesday, September 23, 2020 22:28

 Module 6 Lists Page 34

Strings and list of characters
Text is usually represented in a computer by strings•
In Racket, a string is a sequence of characters in disguise•
string->list is a built in function to convert a string to an explicit list of characters•
list->string does the reverse. It converts a list of characters into a string•
Racket's notation for the character 'a' is #\a•
The result of evaluating (string->list "test") is the list •

Counting characters in a string

This function
consumes a
character
(abbreviated Char)
and a (listof Char)

The characters in
the list do not
have any specific
meaning, so we
named the
paracter based on
its structure, loc.

If the first element
mateches the character
we are counting, count
1. Else count 0.
Whichever it is, add with
the result of processing
the rest of the list.

Another way to structure

Strings
Thursday, September 24, 2020 19:07

 Module 6 Lists Page 35

Wrapper functions
A wrapper function is a simple function that "wraps" the main function and takes care of details like
converting the string to a list

•

count-char is a wrapper function for count-char/list•

Wrapper functions
are short and simple○

always call another function that does much more○

set up the appropriate conditions for calling the other function, usually by transforming one or more of
its parameters or providing a starting value for one of its arguments

○

•

Another way to structure
this function.

A thrid version. This
works but is
considered poor style
because it can be
trivially transformed in
to the simpler and
more readable code
shown above.

count-char basically
does the same thing as
count-char/list but its
parameter is a string.

It calls count-char/list by
passing in the list
version of the string

 Module 6 Lists Page 36

Review
Recall the data definition for a list:•

Given (cons 5 (cons 3 (cons 29 empty))) we can use the data definition
to work backwards, proving that it is a (listof Int).

•

In fact, with the built-in predicate integer? we can write a function that
determines whether its argument is a list of integers

•

Recall the template for a list:•

We can repeat this reasoning on a recursive definition of natural
numbers to obtain a template.

•

Review
Monday, September 28, 2020 21:04

 Module 7 Natural Numbers Page 37

Natural numbers:
Data definition:•

add1 is the built-in function that adds 1 to its argument•
The natural numbers start at 0 in computer science•
Template:•

Suppose we have a natural number n. •
The test (zero? n) tells us which case applies•
If (zero? n) is false, then n has the value (add1 k) for some k•
To compute k, we subtract 1 from n, using the built-in sub1 function•
Because the result (sub1 n) is a natural number, we recursively apply
the function

•

Example: a decreasing list
Goal: countdown, which consumes a natural number n and produces a
decreasing list of all natural numbers less than or equal to n

•

We have some crucial questions to answer:
What do we produce in the base case?○

(cons 0 empty))

•

Data definition and template
Monday, September 28, 2020 21:41

 Module 7 Natural Numbers Page 38

(cons 0 empty))
In the recursive case, what do we do to transform n?○

In this case, we does nothing to n
What is the result of processing (f (sub1 n)) recursively?○

(countdown (sub1 n)) should be the list of natural numbers from
n-1 down to n
How do we combine steps 2 and 3 to obtain the result for (f n)?○

We cons the result of step 2 (n) onto the result of step 3
(countdown (sub1 n))

Function Implementation:•

 Module 7 Natural Numbers Page 39

Intervals of natural numbers
The symbol Z is often used to denote the integers•
We can add subscripts to define subsets of the integers (aka
intervals)

•

Example: Z>=7

If we change the base case test from (zero? n) to (= n 7), we can stop
the countdown at 7

•

This corresponds to the following definition•

We use this data definition as a guide when writing functions, but in
practice we use a requires section in the contract

•

countdown-to-7•

Generalizing countdown
We can generalize countdown by providing the base value (e.g. 0 or 7)
as a second parameter b (the base)

•

The parameter b has to be passed unchanged in the recursion•

Intervals
Monday, September 28, 2020 22:38

 Module 7 Natural Numbers Page 40

This function also works if the inputs are negative numbers, as long as
n>=base

•

 Module 7 Natural Numbers Page 41

Counting up
What if we want an increasing count?•
Consider the non-positive integers Z<=0•

Examples: -1 is (sub1 0), -2 is (sub 1 (sub1 0))•
If an integer i is of the form (sub1 k), then k is equal to (add1 i)•

Template
Notice the additional requires section•

countup:•

As before, we can generalize this to counting up to b, by introducing b as a second parameter in a
template

•

Counting up
Monday, September 28, 2020 23:03

 Module 7 Natural Numbers Page 42

You may not use reverse on assignments unless stated otherwise•

 Module 7 Natural Numbers Page 43

Filling in the list template

If the list lon is empty, so is the result.
Otherwise, the template suggests doing something with the first element of the list, and the sorted
version of the rest

insert is a recursive helper function that consumes a number and a sorted list, and inserts the number
into the sorted list

The helper function insert
We again use the list template for insert•

If slon is empty, the result is the list containing just n•
If slon is not empty, another conditional expression is needed•
n is the first number in the result if it is less than or equal to the first number in slon (<= n (first slon))•

Sorting
Wednesday, September 30, 2020 19:24

 Module 8 More Lists Page 44

n is the first number in the result if it is less than or equal to the first number in slon (<= n (first slon))•
Otherwise, the first number in the result is the first number in slon, and the rest of the result is what
we get when we insert n into (rest slon) (insert n (rest slon))

•

This algorithm is known as insertion sort•

 Module 8 More Lists Page 45

List abbreviations
The expression•

can be abbreviated as

The result of (sort (cons 4 (cons 2 (cons 3 (cons 5 empty)))) can be expressed as •
(list 1 2 4 5). The application itself can be expressed as (sort (list 4 2 1 5))
Difference between cons and list:

A list built with cons will explicitly show the empty at the end of the list○

A list built with list will not show the empty○

•

We use list to construct a list of fixed size. And we use cons to construct a list from one new element (first)
and a list of arbitrary size

•

(second my-list) is an abbreviation for (first (rest my-list)). third, fourth and so on up to eighth are also
defined. Use these sparingly to improve readability.

•

(cons elem lst) because lst is a list of arbitrary size 1.
cons takes any value and a list value2.
(cons 1 empty) has one element, (list 1 empty) has two elements3.

List abbreviations
Wednesday, September 30, 2020 20:54

 Module 8 More Lists Page 46

length = 5

 Module 8 More Lists Page 47

Remember that in (cons v lst), v is a value. Any value.•
(cons 1 (cons 2 empty)) is a value. As a value, it can be put into a list just like any
other value

•

Lists that contain lists are hard to draw when the whole value (a list) goes in a box, •

Lists of lists
Friday, October 9, 2020 23:22

 Module 8 More Lists Page 48

Lists that contain lists are hard to draw when the whole value (a list) goes in a box,
so we're introducing a new diagramming convention (bottom diagram)

•

 Module 8 More Lists Page 49

A payroll is the same as a (listof X) where X is a two-element list that we represent
with (list Str Num). The first element is a string and the second is a number.
Because the data definition has been made more specific, we give it a specific
name: Payroll.

•

Intuitively, an empty list is a Payroll. If you want a longer Payroll, cons the name of
an employee and their salary onto a Payroll.

•

Recap of (list …) vs (listof …)
Use (list …) for a fixed-length list.○

(list …) will have one type parameter for each element in the list○

Use (listof ...) when the length of the list is unknown○

(listof …) will have exactly one argument: the type that every element in the
list will have

○

They are not interchangeable○

•

 Module 8 More Lists Page 50

○

The list's first item is known to be of the form (list Str Num)•
Reflect that fact in the template

reminds us of all the data available to us○

allow us to access the parts of the sublist○

•

 Module 8 More Lists Page 51

Steps in the design recipe:
Write the purpose•
Write some examples•
Write the header (rename payroll-template to something more problem-specific)
and contract (note the use of Payroll and Taxroll)

•

Refine the purpose•

extract elements from the sublists

 Module 8 More Lists Page 52

What do you do in the base case?1.
There are no taxes owed if no one earned a salary. The contract says to produce a
(listof X). empty fits both observations.
How do you transform the first element on the list?2.
Compute the taxes on the salary. Put that number together with the name into a
two-element list
What value is produced by the recursive processing of the rest of the list?3.
A list of taxes owed by the employees on the rest of the list
How to combine the value produced in 2 with the value produced in 3?4.
cons the newly calculated taxes owed to the beginning of the list

 Module 8 More Lists Page 53

A useful strategy is to break the problem into two parts
the part that handles the list○

the part that handles one item from the list○

•

The overall structure of the code is simply the (listof-X-template) and allows one to
focus on the distinct part of how one item is handled

•

 Module 8 More Lists Page 54

 Module 8 More Lists Page 55

An important aspect of the definition is that keys are unique. •
Given a key, we can look it up in a dictionary and get at most one value (it's possible that the key is not here)•
Values, on the other hand, may be duplicated•

sometimes called find or search

sometimes called insert

Dictionaries
Friday, October 9, 2020 23:22

 Module 8 More Lists Page 56

The advantage of an association list is that it is simple to implement. •
The disadvantage is being increasingly slow as the dictionary gets larger (has more entries)•

We could use (listof (list Num Str)) every place we need the data type, principally in contracts•
However, the term AL or "association list" helps the reader understand the intent of the parameter is probably to look
something up. The listof format does not convey that meaning

•

This form also ignores the requirement that keys are unique•

 Module 8 More Lists Page 57

Helper functions make the code more
readable in the improved version

 Module 8 More Lists Page 58

There are two base cases just like the insert function.•
For insert, the two base conditions were

when we got to the end of the list○

when the item we were inserting belonged at the beginning of the list○

•

For lookup the two base cases are
when we get to the end of the list○

when we find what we are looking for○

•

number or string

string, number or bool

1, 2 or 3

 Module 8 More Lists Page 59

 Module 8 More Lists Page 60

Two-dimensional data
Another use of lists of lists is to represent a two-dimensional table.•
For example, a multiplication table:•

The cth entry of the rth row (numbering from 0) is r x c•

Make one row
Make one row of the table but counting the columns from 0 up to nc,
doing the required multiplication for each one

•

cols-to constructs one row for the multiplication table by calculating
what value each column should have

•

Put multiple rows together

2D data
Saturday, October 10, 2020 10:40

 Module 8 More Lists Page 61

In rows-to, the counter is called r. We make a whole row with cols-to
and cons that row onto the list. The result is a list of lists.

•

mult-table is a wrapper function that calls rows-to with the correct
values.

•

 Module 8 More Lists Page 62

Processing two lists simultaneously
We now look at a more complicated recursion, namely writing functions which consume two lists
(or two data types, each of which has a recursive definition)

•

We will distinguish three different cases, and look at them in order of complexity.•
The simplest case is when one of the lists does not require recursive processing•

Processing two lists simultaneously (annotation)
Two parameters, each of which is a list•

Each of those two lists might be empty or not. Therefore, we might have something like this:•

We can actually break it down into three cases
Process one list; the other goes along for the ride○

Both lists are the same length; one element from each is processed at each step○

The general case: unequal lengths, process one or the other or both○

•

Case 1: processing just one list
In the first case of processing two lists, we only actually process one. The second one just goes
along for the ride.

•

That means that of the four tests identified above, we only need to consider two: whether the first
list is empty or not

•

As an example, consider the function my-append•

Processing two lists
Saturday, October 10, 2020 12:45

 Module 8 More Lists Page 63

•

 Module 8 More Lists Page 64

Case 2: processing in lockstep
To process two lists lst1 and lst2 in lockstep, they must be the same length and be consumed at
the same rate

•

lst1 is either empty or a cons, and the same is true of lst2. This means that there are four
possibilities in total.

•

However, because the two lists must have the same length, (empty? lst1) is true if and only if
(empty? lst2) is true

•

This means that only two of the possibilities are valid•
Example: dot product - multiplying entries in corresponding positions (first with first, second with
second and so on) and sum the results

•

 Module 8 More Lists Page 65

Case 3: processing at different rates
The third case is the most general where the lists may be of different lengths and may be
processed at different rates

•

As a result, either one or both could be empty•
If the two lists being consumed are of different lengths, four possibilities are possible•

 Module 8 More Lists Page 66

•

The first possibility is a base case; the second and the third may or may not be•

In the second and the third possibilities where one list is empty, we extract the first element and
the rest of the list for each non-empty list

•

When one list is empty, it could be that all we need is the non-empty list without change. In this
case no recursion is needed

•

But it could be that the non-empty list needs further processing, leading to recursion•

 Module 8 More Lists Page 67

•

Example: merging two sorted lists
Design a function merge that consumes two lists•
Each list is sorted in ascending order (no duplicate values)•
merge will produce one list containing all elements, also in ascending order•
As an example:•

We need more examples to see how to proceed•

 Module 8 More Lists Page 68

If both lists are non-empty, the first element of the merged list would be the smaller of (first lon1)
and (first lon2)

•

If (first lon1) is smaller, then the rest of the answer is the result of merging (rest lon1) and lon2•
If (first lon2) is smaller, then the rest of the answer is the result of merging lon1 and (rest lon2)•

 Module 8 More Lists Page 69

Note that in the first question/answer pair, lon2 is empty, and the answer produced could be
replaced with lon2

•

The first two question/answer pairs are then•

Since both produce lon2 regardless of whether lon2 is empty or not, the two pairs can be replaced
with just

•

The last question/answer pair can be replaced with else. We then have [else (cond …)] which is
considered bad style. The question/answer pairs of the inner cond can be promoted to the outer
cond

•

Together, these transformation result in the following:•

Testing list equality
Check whether two lists of numbers are equal (same elements, same order)•

 Module 8 More Lists Page 70

Two empty lists are equal (return true)•
If one list is empty and the other is not, they are not equal.•
If both of them are non-empty, then their first elements must equal•

 Module 8 More Lists Page 71

 Module 8 More Lists Page 72

The lists could also have mixed type such as (list 1 'a 2 'b)

Example: Does an item appear at least n times in this list?

The recursion involves the parameters n and lst, giving four possibilities•

If n is zero, the function should produce true no matter whether the list is empty
or not because every element always appears at least 0 times

•

We now look at a more complicated recursion, namely writing functions which•

Processing a list and a
number
Monday, October 12, 2020 10:10

 Module 8 More Lists Page 73

The first two cases, in which n is 0, both produce true, so they could be
collapsed into a single case. [(zero? n) true]

We collapsed (and (> n 0) (empty? lst)) to just (empty? lst) because n is not
zero

The nested cond was promoted to the top level cond.

 Module 8 More Lists Page 74

Simple recursion
Recall from Module 06: In simple recursion, every argument in a recursive
function application are either

unchanged, or○

one step closer to a base case according to a data definition○

•

To identify simple recursion, look at the arguments to the recursive function
application - places where the function applies itself recursively:

•

The limits of simple recursion

There may be two recursive applications of max-list.
The code for max-list-v2 is correct.
But computing (max-list-v2 (countup-to 1 25)) is very slow.
This is because the initial application is on a list of length 25, and there are two
recursive applications on the rest of this list, which is of length 24.
Each of those makes two recursive applications again.

max-list can make up to 2n - 1 recursive applications on a list of length n.
This is informally called exponential blowup.

Efficiency
Sunday, October 18, 2020 16:36

 Module 9 Patterns of Recursion Page 75

This is informally called exponential blowup.

Measuring efficiency
We can take the number of recursive applications as a rough measure of a
function's efficiency

•

max-list-v2 can take up to 2n - 1 recursive applications on a list of length n•
length takes n recursive applications on a list of length n•
length's efficiency is proportional to n•
max-list-v2's efficiency is proportional to 2n

We express the former as O(n) and the later as O(2n)•
"Families" of algorithms with similar efficiencies, from most efficient to least:•

lg is log2•
Recognize when your function applies itself recursively twice and avoid that•
Note that the following code is not necessarily a problem:•

It's ok if one application of (foo..) applies foo at either application 1 or application 2
It's a problem if one application of foo does both of them.

Recap

 Module 9 Patterns of Recursion Page 76

In many cases the slow version does the exact same computation twice •
(max-list-v2 (rest lon)). This leads to exponential blowup.
The fast version does the computation (max-list-v1 (rest lon)) and passes that
result to a helper function. The helper function can make use of that value as often
as it needs to prevent calculating again, thus avoiding exponential blowup.

•

 Module 9 Patterns of Recursion Page 77

A human approach
Humans do not seem to use either of the two versions of max-list shown earlier.•
Instead, we tend to find the maximum of a list of numbers by scanning it,
remembering the largest value seen so far.

•

When we see a value that is larger than the largest seen so far, we remember the
new value until we see another that is still larger.

•

When we get to the end of the list, the largest value seen so far is the largest value
in the list.

•

Accumulative recursion
Computationally, we can pass down that largest value seen so far as a parameter
called an accumulator

•

This parameter accumulates the result of prior computation, and is used to compute
the final answer that is produced in the base case.

•

max-list/acc is not simple recursion. •
In simple recursion, the arguments where max-list/acc is applied would be either
one step closer to the base case or unchanged

•

The first argument, (rest lon) is one step closer to the base case•
The second argument is sometimes max-so-far and sometimes (first lon)•

Tracing max-list/acc

This is a wrapper.
Wrappers are used
with accumulative
recursion due to the
extra parameters which
need to be initialized.

Accumulative recursion
Monday, October 19, 2020 20:20

 Module 9 Patterns of Recursion Page 78

Tracing max-list/acc

This technique is known as accumulative recursion•
It is more difficult to develop and reason about such code, which is why simple
recursion is preferable if it is appropriate

•

Simple recursion will continue to be the main tool•
Sometimes accumulative recursion will be easier or yield a more efficient or elegant
solution. In such cases, it is encouraged to use accumulative recursion

•

Indicators of the accumulative recursion pattern
All arguments to recursive function applications are

unchanged, or○

one step closer to a base case in the data definition, or○

a partial answer (passed in an accumulator)○

•

An accumulative function requires at least one accumulator•
There may be more than one accumulator•
The value(s) in the accumulator(s) are used in one or more base cases•
The accumulatively recursive function usually has a wrapper function that sets the
initial value of the accumulator(s)

•

Another accumulative example: reversing a list
Using simple recursion•

Intuitively, append does too much work in repeatedly moving over the produced list
to add one element at the end

•

This has the same worst-case behaviour as insertion sort, O(n2)•

Reversing a list with an accumulator

 Module 9 Patterns of Recursion Page 79

This is O(n)•
A condensed trace:•

 Module 9 Patterns of Recursion Page 80

Generative recursion: GCD
The Euclidean algorithm for Greatest Common Divisor (GCD) can
be derived from the following identity for m > 0

•

euclid-gcd•

This function does not use simple or accumulative recursion.•

Generative recursion
The arguments in the recursive application were generated by doing a
computation on m and n

•

The function euclid-gcd uses generative recursion•
Functions using generative recursion are easier to get wrong, harder to
debug and harder to reason about

•

Simple vs accumulative vs generative recursion
In simple recursion, all arguments to the recursive function
application are either unchanged, or one step closer to a base case in
the data definition.

•

In accumulative recursion, parameters are as above, plus
parameters containing partial answers used In the base case

•

In generative recursion, parameters are freely calculated at each
step.

•

Generative recursion
Monday, October 19, 2020 21:40

 Module 9 Patterns of Recursion Page 81

Short, fixed-length, lists
Payroll with names and salaries•

Other kinds of data that always go together include:
Student (name, program, courses)○

Point (x, y)○

Book (author, title, number of pages)○

•

Example: Student
If we were to use a student list often, we might want to include:

Some helper functions to extract the name, program, and courses○

A predicate to see if a given value represented a student○

Error messages if we gave it another kind of list○

•

We cannot just check for a three-element list•
What we can do is to embed an extra value in the list that is highly unlikely to be in any other list•
If that value is present, then we will assume the list represents a student•
Otherwise, we will assume it does not•

The data definition allows us to use Std in contracts.

make-std makes a Std value.
It takes the three attributes of
a student and bundles them
together with STD-TAG

Compound data
Friday, October 2, 2020 20:24

 Module 10 Structures Page 82

Structures
A Racket structure definition creates all of the above in only one line•

define-struct is a special form that automatically creates functions identical to the functions on the
previous slides.

•

It can consume anything, so we need to make
sure it is a non-empty list (cons?)

A Std will have three pieces of data and the
extra value (length 4)

STD-TAG needs to be the first value.

It's called an "selector function"

std-name checks to ensure that it consumed a Std
value. If it didn't, it gives an error message. The built-in
function error is used for that. check-error is used to
test that an error was produced appropriately.

 Module 10 Structures Page 83

previous slides.
•

The second line is the structure's data definition. •
Whenever you use define-struct, add a data definition to give the expected types. •
Given the data definition, Std may be used in contracts•
Functions automatically created:

make-std○

std?○

std-name○

std-prog○

std-classes○

•

The data definition for a structure always follows the form•

<sname> is the first argument to define-struct
If define-struct is given n field names, it will define n+2 functions. Each function will include
<sname> in its name.

The first one is make-<sname>. It's called a constructor function and is used to construct
values

○

The second is a predicate○

Then there is one selector for each of the n fields. Each is named <sname>-<fname> where
<fname> is the name of a field.

○

The STD-TAG constant is added automatically behind the scenes by Racket. It is not our
concern when we use structures and we do not have access to it

○

•

(make-std "Jo" "CS" (list "Math 137") is a value

 Module 10 Structures Page 84

Syntax and semantics
The special form (define-struct sname (fname_1 … fname_n) defines the structure type sname
with fields fname_1 to fname_n.

•

It also automatically defines the following primitive functions:
Constructor: make-sname○

Selectors: sname-fname_1 … sname-fname_n○

Predicate: sname?○

•

Sname (note the capitalization) may be used in contracts.•

Substitution rules
(make-sname v_1 … v_n) is a value.•
The substitution rule for the ith selector is•

Finally, the substitution rules for the new predicate are:•

Structure templates
The template function for a structure simply selects all its fields, in the same order as listed in
the define-struct

•

Example:•

The above (structure definition, data definition, and template function) are only required once
per file

•

Formalities
Tuesday, October 20, 2020 17:26

 Module 10 Structures Page 85

Example: Classlists
Define a class list that contains students enrolled in a course.•
Develop functions that

Produce the names of the students in the class list○

Add a new student to the classlist, preserving alphabetical order○

Verify that all the students in a classlist have the class in their list of classes.○

•

Data definition for Classlist can be
omitted by writing (listof Std) in
contracts, but it is easier and more
understandable

Structure definition and data
definition for Std (student)

Example: Classlists
Tuesday, October 20, 2020 17:38

 Module 10 Structures Page 86

class-names consumes a Classlist which is a (listof Std). So the template to start with is the
listof-X-template

•

(first lox) is a student. So to write out the full classlist-template we would apply the std-template•

 Module 10 Structures Page 87

 Module 10 Structures Page 88

Mixed data
Racket provides predicates such as number? and symbol? to identify data types•
define-struct also defines a predicate that tests whether its argument is that type of structure•
We can use these to check aspects of contracts and to write functions that consume mixed
data - data of several (probably related) types

•

Example: A university has undergraduate students as well as graduate students. Graduate
students are like other students except they also have a supervisor

•

Data definitions

There is no structure definition for mixed data•
There is a data definition that describes the data and gives a name that can be used in
contracts

•

Template function
The template function for mixed data will determine the type of data and then include a
template for that type

•

An alternative for student-template would define and then use ustd-template and gstd-template:•

Types like Student and Classlist are for our
benefit only. They help us understand the data
that our functions consume and produce

Mixed data
Tuesday, October 20, 2020 18:24

 Module 10 Structures Page 89

 Module 10 Structures Page 90

anyof types
Unlike UStd and GStd, the Student and Classlist types do not have a structure definition (i.e.
define-struct)

•

For contracts like these to make sense, we need to have the data definitions for Student and
Classlist included as a comment in the program

•

An alternative to Student would be to use•

Checked functions
Constructor functions do not check that their arguments have the correct type•
We can use type predicates to make a type-safe version•

 Module 10 Structures Page 91

•

 Module 10 Structures Page 92

Structures vs. Lists
We do not have to use structures. We could construct a class list with simple lists•

Structures
help avoid some programming error (e.g. extracting the wrong field)•
provide meaningful names that are easier to read and understand•
automatically generate functions•

Lists
make it possible to write "generic" functions that operate on several types of data•
can be expressed more compactly than structures•

Structures vs Lists
Wednesday, October 21, 2020 9:28

 Module 10 Structures Page 93

Quoting
cons notation emphasizes a fundamental characteristic of a list - it has a first element and
the rest of the elements. Elements of the list can be computed as the list is constructed

•

list notation makes our lists more compact but loses the remainder about the first element
and the rest, Like cons, element of the list can be computed as the list is constructed.

•

Quote notation is even more compact but loses the ability to compute elements during
construction.

•

Examples:

Quoting applies to more than lists•
Quoted numbers, strings and characters remain unchanged•
Quoting (…) turns the … into a list•
Quoting a list of symbols "factors out" the quote to the front of the list•
Parentheses nested inside a quoted list are also turned into a list. They should not be quoted•
Because nested parentheses turn into sublists, we cannot easily include function
applications. Racket turns the function into a symbol

•

Quoting
Wednesday, October 21, 2020 9:53

 Module 10 Structures Page 94

Tree terminology
A tree is a set of nodes and edges where an edge connects two distinct nodes.•
A tree has three requirements

One node is identified as the root.○

Every node c other than the root is connected by an edge to some other node p○

p is called the parent and c is called the child

•

Examples
Friday, October 23, 2020 12:34

 Module 11 Trees Page 95

p is called the parent and c is called the child
A tree is connected for every node n other than the root○

Other useful terms

leaves: nodes with no children○

internal nodes: nodes that have children○

labels: data attached to a node○

ancestors of node n: n itself, the parent of n, the parent of the parent, … up to the root○

descendants of n: all the nodes that have n as an ancestor○

subtree rooted at n: n and all of its descendants○

•

Characteristics of trees
Number of children of internal nodes:

exactly two○

at most two○

any number○

•

Labels:
on all nodes○

just on leaves○

•

Order of children (matters or not)•
Tree structure (from data or for convenience)•
In some trees, each internal node will always have exactly two children while others may have an
unlimited number.

•

It is also useful to know whether the order of the children matters or not.•
Consider the binary expression tree

Each internal node has exactly two children. That's implied by the "binary" in the name.○

It only deals with operators having a left and a right operand.○

The order of the children in a binary expression tree. If we changed the order of the children of
the division operator, we would get a different result when evaluating the expression

○

•

 Module 11 Trees Page 96

For a binary search tree (BST), the structure will be very important to enable fast searching, but the
structure will be decided by us rather than coming from the data.

•

 Module 11 Trees Page 97

Binary trees
A binary tree is a tree with at most two children for each node.•
Binary arithmetic expression trees and evolution trees are both examples of binary trees•
Characteristics:

Each internal node has at most two children○

Our examples will have labels on all the nodes. It is however not a requirement of
binary trees

○

Order of the children does not matter○

Structure is for convenience○

•

Drawing binary trees

Note: We will consistently use Nats in our binary trees, but we could use symbols, strings,
structures, etc.

Binary tree data definition

Binary Trees
Friday, October 23, 2020 13:38

 Module 11 Trees Page 98

Binary tree data definition

The node's label is called "key" in anticipation of using binary trees to implement
dictionaries

•

The BT data definition is an example of mixed data
One case is a particular kind of list, and empty list○

The other case is a structure○

•

We could have used many other values instead of empty - any value that we can
distinguish from a Node, such as 0, false or 'emptyTree

•

We chose empty because it is an existing value that strongly suggests "empty tree".•

Aside: Tips for building templates
For each part of the data definition

If it is a defined data type, apply that type's template○

If it says "one of" or is mixed data, include a cond to distinguish the cases○

If it is compound data (a structure), extract each of the fields, in order○

If it is a list, extract the first and rest of the list○

•

Add ellipses around each of the above•
Apply the above recursively•

 Module 11 Trees Page 99

Searching binary trees
Searching a binary tree for a given key - produce true if the key is in the tree and false
otherwise

•

The strategy
See if the root node contains the key we are looking for. If so, produce true.○

Otherwise, recursively search in the left subtree and in the right subtree. ○

If either recursive search finds the key, produce true. Otherwise, produce false.○

•

 Module 11 Trees Page 100

○

Find the path to a key
Write a function, search-bt-path, that searches for an item in the tree. As before, it will
return false if the item is not found. However, if it is found, the function will return a list of
symbols 'left and 'right indicating the path from the root to the item

•

If the tree contains a duplicate, produce the path to the left-most item•

 Module 11 Trees Page 101

Strategy for solving this problem
A non-empty tree has three important parts: the root, the left subtree and the right
subtree

○

If the root contains k, the value we are searching for, produce empty and we are
done.

○

Otherwise, if only we could find a path to k in the left subtree, we could cons 'left
onto that path

○

If we cannot find k in the left subtree, we could look in the right subtree. If we find a
path there, all we need to do is cons the value 'right onto that path.

○

If k is not in the root, not in the left subtree and not in the right subtree, then it is not
in the tree at all. we produce false.

○

How to check if k is in the left subtree? Apply search-bt-path. If it produces a list, we
know k was found

○

However, after we have checked if k is in the left subtree, we still need to have the
path to k so that we can have (cons 'left path-to-k). We need to call search-bt-path
one more time

○

This strategy is correct, but leads to inefficient run-time○

•

The strategy above does not look that much like binary tree template:•

The next version of search-bt-path actually looks more like the template while also
solving the efficiency issue

•

'() means empty

 Module 11 Trees Page 102

The insight is that once a value is passed to a parameter it can be used multiple times
without recalculating it

•

So we search for k in both the left and right subtrees, passing the results to the helper
function. choose-path can use those values multiple times without hurting the efficiency

•

'() means empty

 Module 11 Trees Page 103

Data definition

The BST ordering property
key is greater than every key in left•
key is less than every key in right•
The ordering property holds in every subtree•

Example:

Binary search trees
Tuesday, October 27, 2020 15:43

 Module 11 Trees Page 104

Searching in a BST (for n)
If the BST is empty, then n is not in the BST.•
If the BST is a node (make-node k left right), and k equals n, then we have found it.•
Otherwise it might be in either the left or right subtree

If n < k, then n might be in the left subtree, and we only need to recursively
search in left

○

If n > k, then n must be in the right subtree, and we only need to recursively
search in right.

○

•

Either way, we save one recursive function application•

Adding to a BST
If t is empty, then the result is a BST with only one node containing n•
If t is of the form (make-node k left right) and n = k, then the key is already in the tree •

The last clause, (> n (node-key t)),
could be replaced with else

 Module 11 Trees Page 105

If t is of the form (make-node k left right) and n = k, then the key is already in the tree
and we can simply produce t

•

Otherwise, n must go in either the left or right subtree
If n < k, then the new key must be added to left○

If n > k, then the new key must be added to right○

•

Again, we only need to make one recursive function application•
The contract is bst-add: Nat BST --> BST•
When we consume a node that does not match the key, we need to produce a new
node containing the old key, the transformed subtree, and the untransformed other
subtree.

•

Creating a BST from a list
If the list is empty, the BST is empty•
Is the list is of the form (cons k lst), we add the key k to the BST created from the lst.
The first key in the list is inserted last.

•

It is also possible to write a function that inserts key in the opposite orde•

 Module 11 Trees Page 106

Augmenting trees
So far nodes have been (define-struct node (key left right))•
We can augment the node with additional data (define-struct node (key val left right))

The name val is arbitrary - choose any name○

The type of val is also arbitrary - number, string, structure, etc○

Could augment with multiple values○

The set of keys remains unique○

The tree could have duplicate values○

•

BST dictionaries
An augmented BST can serve as a dictionary that can perform significantly better than an
association list, which is a list of two-element lists

•

We need to modify node to include the value associated with the key and search needs to return the
associated value, if the key is found.

•

Augmenting trees
Tuesday, October 27, 2020 16:39

 Module 11 Trees Page 107

Evolutionary trees
Evolutionary trees are augmented binary trees that show the evolutionary relationships between
species. Biologists believe that all life on Earth is part of a single evolutionary tree, indicating
common ancestry

•

Leaves represent a current species. They are augmented with a name and whether the species is
endangered

•

Internal nodes represent a hypothesized common ancestor species that split into two new
species. Internal nodes are augmented with a name and an estimate of how long ago the split took
place (in millions of years)

•

Evolutionary trees are constructed by evolutionary biologists
Start with current species○

Based on common attributes (including DNA sequences), hypothesize common ancestor
species

○

Keep going with more and more common ancestor species○

Back to a single common ancestor (the root)○

•

 Module 11 Trees Page 108

Representing evolutionary trees
Internal nodes each have exactly two children•
Each internal node has

the name of the common ancestor species○

how long ago the common ancestor split into two new species○

the two species that resulted from the split○

•

Leaves have
the name of the current species○

the endangerment status (true if endangered; false otherwise)○

•

The order of children does not matter•
The structure of the tree is dictated by a hypothesis about evolution•

Data definitions

Note that the Ancestor data definition uses a pair of EvoTrees

Binary Tree Evolutionary Tree

Data definition A Node is a (make-node Nat BT BT).
A binary tree (BT) is one of:

empty•
Node•

A Current is a (make-current Str Bool).
An Ancestor is a
(make-ancestor Str Num EvoTree EvoTree).
An (EvoTree) is one of:

A Current•
An Ancestor•

 Module 11 Trees Page 109

Non-recursive
case:

empty Current structure

Recursive case Node structure Ancestor structure

Sample leaf node (make-node 5 empty empty) (make-current "human" false)

Smallest possible
tree

empty A single Current species

Subtree order Sometimes matters Does not matter

Number of
children

Nodes may have 0, 1 or 2 children Every internal node has exactly two children

Types of children The left and right fields for a BT are
BTs

The left and right fields for an Ancestor are
not Ancestor nodes. They are EvoTrees. They
might be Current nodes or they might be
Ancestor nodes.

 Module 11 Trees Page 110

 Module 11 Trees Page 111

We know that (ancestor-left as) and (ancestor-right as) are EvoTrees, so we apply the EvoTree
function to them.

•

ancestor-template uses evotree-template and evotree-template uses ancestor-template•
This is called mutual recursion. It is when a pair of functions call each other•
The base case in this example is [(current? t) (current-template t)] in evotree-template because
current-template has no recursive applications

•

EvoTree Example 1
Counts the number of current species within an evotree•
Strategy for solving this problem

If t is a current species, we have exactly one current species and no subtrees, so just return 1.○

If t is a common ancestor, then count the number of current species in each of its two subtrees
and add these numbers together

○

•

 Module 11 Trees Page 112

In this case mutual recursion can be avoided by folding the two helper functions into count-current-
species

•

Traversing a tree
A tree traversal refers to the process of visiting each node in a tree exactly once•
Visiting a node just means doing something with it. It might be checking to see if it has the value we
are looking for, collecting some information from it, or transforming it in some way

•

They key idea is that each node is visited at least once•
They are often classified by the order in which the nodes are visited

pre-order: visit the root, then each subtree○

in-order: visit one subtree, the root, then the other subtree○

post-order: visit both subtrees, then the root○

•

The order often affects the function's result•
The increment example from binary trees is one example of a pre-order traversal•

List-names

(listof Str)

(list of Str)

In list-cnames, the name is a single
string. Just producing a string violates the
contract. We change the body to (list
(current-name cs))

In list-anames, there are recursive calls.
We combine several lists into one list with
append. For the ancestor's name, we do
(list (ancestor-name as))

 Module 11 Trees Page 113

The problem with this is that when list-names/acc is applied the second time the names argument is
wrong

•

Nodes that have now been visited (the first application) are not included in names•

The accumulator is set to empty initially

list-name is a wrapper function

list-name/acc uses a parameter,
names. which is the list of names
seen so far in the traversal of the tree

We split the problem into two subproblems:
listing the names if the tree is a current
species and listing the names if it is an
ancestor species

list-cnames consumes the list of names seen so far
and cons the name of the current species, thus
producing a list of strings indicated by the contract

list-anames applies list-names/acc to
each of the subtrees. It also needs to
supply the names of the nodes visited
so far in each of these applications

 Module 11 Trees Page 114

Binary expression trees
The expression ((2*6)+(5*2))/(5/3) can be represented as a binary expression tree•
A binary expression tree structures arithmetic expressions into a tree which makes it
easy to calculate the value of the expression

•

Representing binary arithmetic expressions
Internal nodes each have exactly two children•
Leaves have number labels•
Internal nodes have symbol labels•
Order of children matters•
The structure of the tree is dictated by the expression•
Data definition:•

Some examples of binary arithmetic expressions•

Leaf nodes will always be numbers○

Internal nodes will always have an operator with left and right subtrees that are
binary arithmetic expressions

○

the smallest possible binary arithmetic expression tree is a single number

the next smallest possible tree is two numbers and an operator

Binary arithmetic expression trees
Wednesday, October 28, 2020 22:22

 Module 11 Trees Page 115

This tree represents the expression
(2 * 6 + 5 * 2) / (5 - 3)

To evaluate this expression,
calculate the value of the left
subtree, calculate the value of the
right subtree, and then divide

binexp-template is mutually recursive
because binexp-template calls
binode-template and binode-template
calls binexp-template

The base case is when the binary
expression is just a number

The binode-template could have been
absorbed into the binexp-template,
turning the mutual recursion into
ordinary recursion

 Module 11 Trees Page 116

If the binary expression is just a number, the value is that same number.
Otherwise, it is an internal node with subtrees, so we apply eval-binode, a
function based on the binode-template

For each of the four arithmetic operators, we check which one it is,
calculate the values of the left and right subtrees (using eval) and then do
the right thing for that operator using the built-in function

 Module 11 Trees Page 117

eval-binode now takes three parameters

 Module 11 Trees Page 118

General trees
Binary trees can be used for a large variety of application areas•
One limitation is the restriction on the number of children•
Trees with an arbitrary number of children (subtrees) in each node are called general trees•

General arithmetic expressions
Racket expressions using the functions + and * can have an unbounded number of
arguments. For example,

•

Representing general arithmetic expression trees
For a binary arithmetic expression, we defined a structure with three fields: the operator, the
first argument and the second argument

•

For a general arithmetic expression, we define a structure with two fields: the operator and
a list of arguments (a list of arithmetic expressions)

•

Developing eval

General trees
Thursday, October 29, 2020 15:04

 Module 11 Trees Page 119

 Module 11 Trees Page 120

Alternate data definition
We can replace the structure opnode and the data definitions for AExp with a list:•
Data definition•

Each expression is a list consisting of a symbol (the operator) and a list of expressions

additive identity
multiplicative identity

 Module 11 Trees Page 121

Each expression is a list consisting of a symbol (the operator) and a list of expressions○

Structuring data using mutual recursion
Mutual recursion arises when complex relationships among data result in cross references
between data definitions

•

The number of data definitions can be greater than two•
Structures and lists may also be used•
In each case

create templates from the data definitions, and○

create one function for each template○

•

 Module 11 Trees Page 122

Nested lists
We have flat lists (no nesting)•

We also have lists of lists (one level of nesting)•

We now consider nested lists (arbitrary nesting)•

It is helpful to visualize these nested lists as trees•

Visualizing nested lists
It is often helpful to visualize a nested list as a tree, in which the leaves correspond
to the elements of the list, and the internal nodes indicate the nesting

•

This is an example of a leaf-labelled tree
Labels only appear on the leaves○

Internal nodes are not labelled○

•

'(…) can be viewed as a "node" with the contents of the list as the children•
But unlike the nodes we have seen previously, these "nodes" can appear as a leaf
when they are empty

•

Data definition for nested lists
Sample nested lists•

Nested Lists
Friday, October 30, 2020 18:13

 Module 11 Trees Page 123

Observations:
A nested list might be empty○

The first item of a non-empty nested list is either

a nested list▪

a single item (a number, not a list)▪

○

The rest of a non-empty nested list is a nested list○

•

This can be generalized to generic types: (nested-listof X)•

The data definition has three clauses, which show up as the three question/answer
pairs in the template

As with previous templates, when we see a specific data type (nested-listof X) in the
data being consumed, we apply the appropriate template to it (nest-lst template)

 Module 11 Trees Page 124

 Module 11 Trees Page 125

Note that flatten produces all of the
items in the consumed nested list in
the same order.
We rarely used append so far in the
course. Consider using append

when the first list may have a
length greater than one, or

•

when there are more than two lists•

append is used when
there are two lists

cons is used to add a
single item to the
front of a list

 Module 11 Trees Page 126

If the first is a single item, cons it on the result of applying flatten to the rest of the list

If the first is a nested list, flatten it and append it with the result of applying flatten tp
the rest of list

 Module 11 Trees Page 127

Local definitions
The functions and special forms we have seen so far can be arbitrarily nested, except define
and check-expect

•

So far, definitions have to be made "at the top level", outside any expression•
The intermediate language provides the special form local, which contains a series of local
definitions plus an expression using them

•

Motivating local definitions
Consider Heron's formula for the area of a triangle with sides a, b, c:•

We will describe several possibilities, starting with a direct implementation•

Motivation: direct translation

Professional programmers try to follow the "DRY Principle" - "Don't Repeat Yourself"•
Repeating yourself

Allows bugs to be fixed at some places but not others○

Is often less efficient for the computer○

Involves more typing○

Means the code must be understood again each time it occurs○

•

Motivation
Wednesday, November 4, 2020 0:03

 Module 12 Local Definitions Page 128

The helper function calculates the value of s in the original formula•
However, it is called four times and also has a terrible name•

 Module 12 Local Definitions Page 129

This version also solves the DRY problem. The code to compute s is not repeated. It does not
have to be typed multiple times and does not have to be executed multiple times

•

Motivation: use local
The local special form we introduced provides a natural way to bring the definition and use
together

•

Since local is another special form (like cond) that results in double parentheses, we will use
square brackets to improve readability. This is another convention

•

t-area-v3 is actually a wrapper function

 Module 12 Local Definitions Page 130

Semantics of local
Local definitions permits reuse of names•
This is not new to us•

The following produces (+ 4 3), not (+ 4 5)•

Reusing names
(define n v) binds a value v to a name n•
The name of a formal parameter to a function may reuse a name such as n within the body
of that function

•

Similarly, a define within a local expression may reuse a name which has already been
bound to another value or expression

•

Informal subsitution rule for local
The substitution rule works by replacing every name defined in the local with a fresh name
(fresh identifier), a new, unique name that has not been used anywhere else in the program

•

Each old name within the local is replaced by the corresponding new name•
Because the new name has not been used elsewhere in the program, the local definitions
(with the new name) can now be "promoted" to the top level of the program without affecting
anything outside of the local

•

We can now use our existing rules to evaluate the program•

This outputs 8, not 12

Semantics
Wednesday, November 4, 2020 19:22

 Module 12 Local Definitions Page 131

Revising function substitution
The previous statement about using our existing rules was not quite correct•
Consider the code below:•

When (foo 2 3) is evaluated,
the x inside the local is not
substituted with 2 because x
is redefined in local

 Module 12 Local Definitions Page 132

Reasons to use local
Clarity: naming subexpressions•
Efficiency: avoid recomputation•
Encapsulation: hiding stuff•
Scope: reusing parameters•

Clarity: naming subexpressions
A subexpression used twice within a function body always yields the same value•
Using local to give the reused subexpression a name improves the readability of the code•
Recall t-area. Naming the subexpression made the relationship to Heron's Formula clear•

Clarity: mnemonic names
Sometimes we choose to use local in order to name subexpressions mnemonically to make
the code more readable, even if they are not reused

•

This may make the code longer•

Efficiency: avoid recomputation
We can use local to avoid recomputation•

Reasons
Friday, November 6, 2020 19:56

 Module 12 Local Definitions Page 133

This is the fourth approach we have seen to find the maximum value in a non-empty list:
max-list-v1 used the built-in helper function, max1.
max-list-v2 had two recursive applications that led to significant efficiency issues2.
max-list-v3 solved the problem with an accumulator3.
max-list-v4 solves the problem with local4.

 Module 12 Local Definitions Page 134

This version of search-bt-path often applies itself twice to the same argument,
resulting in an exponential growth in the number of applications as the tree
becomes larger

This version uses a helper method to avoid recomputing values

 Module 12 Local Definitions Page 135

This new version of search-bt-path avoids making the same recursive function application
twice, and does not require a helper function

•

But it still suffers from an inefficiency: we always traverse the entire tree, even if the correct
solution is found immediately in the left subtree

•

We can avoid the extra search of the right subtree using nested locals•

Encapsulation

This version uses local to avoid recomputing values

The left-path is only
computed if the outer
else clause is reached.
The path is checked
and, if only required, is
a second local
evaluated and the
right-path is computed

 Module 12 Local Definitions Page 136

Encapsulation
Encapsulation is the process of grouping things together in a "capsule"•
We have already seen data encapsulation in the use of structures•
There is also an aspect of information hiding to encapsulation which we did not see with
structures

•

The local bindings are not visible (have no effect) outside the local expression. Thus, they
can "hide" information from other parts of the programs

•

Behaviour encapsulation
Local definitions can bind names to functions as well as values. Evaluating the local
expression creates new, unique names for the functions just as for the values

•

This is known as behaviour encapsulation•
It allows us to move helper functions within the function that uses them

They are invisible outside the function○

They do not clutter the "namespace" at the top level○

They cannot be used by mistake○

•

Example: sum-list

Advantages of making the accumulatively recursive helper function local:
It makes clear that the helper has no use outside of sum-list○

It facilitates reasoning about the program○

•

local is often used with wrapper functions•
The helper function - the one that does most of the work - is defined within the local•

 Module 12 Local Definitions Page 137

Encapsulation and the design recipe
A function can enclose the cooperating helper functions inside a local, as long as these are
not needed by other functions

•

When this happens, the enclosing function and all the helpers act as a cohesive unit•
However, the local helper functions require contracts and purposes, but not examples or
tests

•

The helper functions can be tested by writing suitable tests for the enclosing function•
Make sure that the local helper functions are still tested completely•

 Module 12 Local Definitions Page 138

Mutual Recursion
local can also handle mutually recursive functions•

foo and bar are each given fresh names and are lifted to the program's top level•
They then act just like other pairs of mutually recursive functions•

Scope: reusing parameters
Making helper functions local can reduce the need to have parameters go along for the ride•

Note that
insert only
needs a
purpose and
a contract

Examples
and tests
are not
required

 Module 12 Local Definitions Page 139

n no longer needs to be a parameter to countup-from, because it is in scope•
If we evaluate (countup-v2 10), a renamed version of countup-from with n replaced by 10 is
lifted to the top level

•

If we evaluate (countup-v2 20), a renamed version of countup-from with n replaced by 20 is
lifted to the top level

•

Example: mult-table
Recall that•

The ending point, to, never changes
Hence we describe it as "going along
for the ride"

 Module 12 Local Definitions Page 140

When the functions rows-to and cols-to are lifted to the top level they will have the values
for nr and nc "embedded" in the body of the function

•

Advantages to this version of mult-table include
Making clear that rows-to and cols-to belong to mult-table and are not expected to have
other uses

○

Not needing to spend effort to determine that nc and nr do not change as the helper
functions execute

○

•

 Module 12 Local Definitions Page 141

functions execute
○

Simplifying the parameters for the helper functions and thus reducing the chances they
are mixed up

○

 Module 12 Local Definitions Page 142

Terminology associated with local
The binding occurrence of a name is its use in a definition, or formal parameter to a function•
The associated bound occurrences are the uses of that name that correspond to that binding•
The lexical scope of a binding occurrence is all places where that binding has effect, taking
note of holes caused by reuse of names

•

Global scope is the scope of top-level definitions•
If you click "Check Syntax" and then hover your mouse over a binding occurrence, it will draw
arrows to the bound occurrences

•

Hovering over a bound occurrence will draw an arrow from the binding occurrence and highlight
the other bound occurrences

•

The "holes" are the occurrences of x that are not highlighted due to the re-definition of x in local•

Terminology
Friday, November 6, 2020 21:55

 Module 12 Local Definitions Page 143

First class values
Racket is a functional programming language, primarily because Racket's functions are first class values•
Functions have the same status as the other values we have seen. They can be:

consumed as function arguments○

produced as function results○

bound to identifiers○

stored in lists and structures○

•

Functions are first class values in the Intermediate Student (and above) versions of Racket•

Intro
Saturday, November 7, 2020 21:14

 Module 13 Functions as Values Page 144

Consuming functions
In Intermediate Student a function can consume another function as an argument•

Example
Consider two similar functions, eat-apples and keep-odds•

What these two functions have in common is their general structure•
Where they differ is in the specific predicate used to decide whether an item is removed from the
answer or not

•

Because functions are first class values, we can write one function to do both these tasks because
we can supply the predicate as an argument to that function

•

Consume
Saturday, November 7, 2020 21:26

 Module 13 Functions as Values Page 145

my-filter performs the same actions as the built-in function filter•
filter handles the general operation of selectively keeping items on a list•
Functions such as filter that consume a (listof X) and a function to generalize it are called abstract
list functions (abbreviated ALFs) or higher order functions

•

 Module 13 Functions as Values Page 146

Using my-filter

The function filter. which behaves identically to my-filter, is built into Intermediate Student and full
Racket

•

filter and other abstract list functions provided in Racket are used to apply common patterns of
simple recursion

•

Functions like eat-apples that require a custom predicate are often ideal candidates for local•
For example, instead of the code shown on the slide, consider•

Advantages of functional abstraction
Functional abstraction is the process of creating abstract functions such as filter•
Advantages include

reducing code size○

avoiding cut-and-paste○

fixing bugs in one place instead of many○

improving one functional abstraction improves many applications○

•

 Module 13 Functions as Values Page 147

Producing functions
We have seen that local could be used to create functions during a computation, to be used in
evaluating the body of the local

•

Because functions are values, the body of the local can produce such a function as a value•

Example: make-adder

Trace of (make-adder 3)

(make-adder 3) is the renamed function f_1, which is a function that adds 3 to its argument•
We can do the following things:

apply this function immediately○

use it in another expression○

put it in a data structure○

•

Example: make-adder applied immediately

Before:
First position in an application must be a built-in or user-defined function○

A function name has to follow an open parenthesis○

•

Now:
First position can be an expression (computing the function to be applied). Evaluate it along
with the other arguments

○

A function application can have two or more open parentheses in a row: ○

((make-adder 3) 4)

•

A note on scope

In add3, the parameter m is of no consequence after add3 is applied. Once add3 produces its
value, m can be safely forgotten

•

In make-adder, after the parameter n is applied it does have a consequence.•

Produce
Sunday, November 8, 2020 14:58

 Module 13 Functions as Values Page 148

•
It is embedded into the result, f, where it is "remembered" and used again, potentially many times

Producing and consuming functions
Using local to produce a function gives us a way to create semi-custom functions "on the spot" to
use in expressions.

•

This is particularly useful with Abstract List Functions (ALFs) such as filter•

 Module 13 Functions as Values Page 149

Binding functions to identifiers
The result of make-adder can be bound to an identifier and then used repeatedly•

We can bind a value like 3 or "Hello" to an identifier to make a constant•
Because functions are values, we can do that with functions, too•
(make-adder 2) produces a function. (define add2 (make-adder 2)) gives that function a name so it
can be used over and over

•

Tracing a bound identifier

Bind
Sunday, November 8, 2020 15:54

 Module 13 Functions as Values Page 150

Storing functions in lists and structures
Recall our code in module 11 for evaluating arithmetic expressions•

Code that is underlined
means it repeats at least
once in my-apply

Store
Sunday, November 8, 2020 16:16

 Module 13 Functions as Values Page 151

my-apply is now consuming a function rather than a symbol•
In the base case, (op) produces the identity appropriate to the operator•
In the recursive case. The op is applied to the first expression on the list of arguments and the
result of applying the operator to the rest of the arguments

•

This works for any binary function that is also defined for zero arguments•

The key insight is that we will store
the function itself (a first class
value) in the opnode structure
The … in opnode's data definition
is because we do not have a way
to express a function's type

(+) produces the additive identity, 0 (*) produces the multiplicative identity, 1

Key idea: make a dictionary (implemeted as an
association list) mapping symbols to the
functions they represent
lookup-al consumes a symbol and produces the
corresponding function

 Module 13 Functions as Values Page 152

Summary: Functions in lists and structures
We have stored functions in both a structure and a list•
Using a function instead of a symbol get rid of repetitive code in my-apply•
Using quote notation makes our expressions more succinct, but forced us to deal again with
symbols to represent functions

•

Putting symbols and functions in an association list provided a clean solution•
Adding a new binary function (also defined for zero arguments) only requires a new line in trans-
table

Functions as first class values (summary)
As a first class value, we can do anything with a function that we can do with other values

consume: my-apply consumes the operator○

produce: lookup-al looks up a symbol, producing the corresponding function○

bind: results of lookup-al to op (a parameter)○

store: stored in trans-table○

•

association list) mapping symbols to the
functions they represent
lookup-al consumes a symbol and produces the
corresponding function

The double parenthesis here means we are
evaluating look-al to obtain the function to use

my-apply consumes a function
and a list of arguments, which is
identical to the previous version

We use lookup-al to translate a symbol into a
function it represents. Then it becomes the
op parameter to my-apply
We are using a list rather than the opnode
structure. Therefore we get the operator with
(first ex) and the arguments with (rest ex)

 Module 13 Functions as Values Page 153

Contracts and types
Contracts describe the type of data consumed and produced by a function•
What is the type of a function consumed or produced by another function?•
We can use the contract for a function as its type•
For example, the type of > is (Num Num -> Bool), the contract of that function•

Contracts for abstract list functions
filter consumes a function and a list, and produces a list•
We might be tempted to conclude that its contract is •

•

The application (filter odd? (list 1 2 3)) does not obey the contract (the contract for odd? is
Int -> Bool) but still works as desired

•

There is a relationship among the two arguments to filter and the result of filter•

Parametric types
An application of (filter pred? lst) can work on any type of list, but the predicate provided
should consume elements of that type of list

•

In other works, we have a dependency between the type of the predicate and the type of the
list

•

To express this, we use a type variable, such as X, and use it in different places to indicate
where the same type is needed

•

It is a symbol that stands for some specific but currently unknown type•

The contract for filter
filter consumes a list of type (listof X)•

Contracts and types
Monday, November 9, 2020 16:37

 Module 13 Functions as Values Page 154

filter consumes a list of type (listof X)•
This implies that the predicate must consume an X. The predicate must also produce a Bool.
It thus has a contract (and type) of (X -> Bool)

•

filter produces a list of the same type it eonsumes•
Therefore the contract for filter is:•

Here X stands for the unknown data type of the list•
filter is polymorphic or generic. It works on many different types of data•

Using contracts to understand
Many of the difficulties one encounters in using abstract list functions can be overcome by
careful attention to contracts

•

For example, the contract for the function provided as an argument to filter says that it
consumes one argument and produces a Boolean value.

•

This means we must take care to never use filter with an argument that is a function
consuming two variables, or producing a number

•

 Module 13 Functions as Values Page 155

Example: Simulating structures
We can use the ideas of producing and binding functions to simulate structures•
Consider a structure representing a point:•

This can be simulated with a function:•

Tracing mk-point

Notice how the parameters have been substituted into the local definition•
We now rename symbol-to-value and lift it out•

p1 is now a function with the x and y values we supplied to mk-point coded in•
To get out the x value, we can use (p1 'x)•

We can define a few convenience functions to simulate the structure accessor
functions point-x and point-y

•

If we apply mk-point again with different values, it will produce a differnet rewritten and
lifted version of symbol-to-value, say symbol-to-value_2

•

Example
Monday, November 9, 2020 17:21

 Module 13 Functions as Values Page 156

Simulating structures summary
The result of a particular application, say (mk-point 3 4) is a "copy" of symbol-to-value
with 3 and 4 subsituted for x and y, repectively

•

That "copy" can be used much later, to retrieve the value of x or y that was supplied to
mk-point

•

This is possible because the "copy" of symbol-to-value, even though it was defined in a
local definition, survives after the evaluation of the local is finished

•

 Module 13 Functions as Values Page 157

Abstraction
Abstraction is the process of finding similarities or common aspects, and forgetting
unimportant differences

•

Example: writing a function
The differences in parameter values are forgotten, and the similarity is captured in the
function body

○

Similarities between functions are captured in function templates○

•

Anonymous functions

not-symbol-apple? is unlikely to be needed elsewhere•
We can avoid cluttering the top level with such definitions by putting them in local expressions•

Introducing lambda

•

can also be written as

lambda can be thought of as "make-function"•
It can be used to create a function which we can then use as a value, for example, as the
value of the first argument of filter

•

When a function produced in a local is only used once, lambda gets rid of the code that is not
actually needed

•

We need lambda, a list of parameter names and the expression using them

Anonymous functions
Thursday, November 12, 2020 16:13

 Module 14 Functional Abstraction Page 158

Other examples of using lambda with filter

 Module 14 Functional Abstraction Page 159

The double parentheses indicates that we need to compute the function (the inner expression)
to apply to the arguments (the outer expression)

•

In this case, compute means creating the function using lambda•
Lambda expressions are already in the simplest form, so the next step in the trace is to reduce
the arguments to values:

•

Finally, each argument is matched with the corresponding parameter and then substituted into
the function's body expression each place that parameter appears. The entire expression is
replaced with the rewritten body expression

•

 Module 14 Functional Abstraction Page 160

 Module 14 Functional Abstraction Page 161

Syntax and semantics
When we first encountered ((make-adder 3) 4), we noted the differences in function
application:

Before Module 13

First position in an application must be a built-in or user-defined function▪

A function name has to follow an open parenthesis▪

○

Module 13 and later

First position can be an expression (computing the function to be applied). Evaluate
it along with the other arguments

▪

A function application can have two or more open parentheses in a row: ▪

○

•

These observations are also true of using lambda•

Syntax
Thursday, November 12, 2020 17:12

 Module 14 Functional Abstraction Page 162

In this example, foo is defined as a constant.

Like any constant, its value needs to be substituted into the expression

 Module 14 Functional Abstraction Page 163

lambda and function definitions
lambda underlies the definition of functions•
Until now, we have had two different types of definitions•

But there is really only one kind of define, which binds a name to a value•
Internally, •

is translated to

which binds the name interest-earned to the function value

Using short names to make the transformation•

 Module 14 Functional Abstraction Page 164

 Module 14 Functional Abstraction Page 165

Example
Sunday, November 15, 2020 15:41

 Module 14 Functional Abstraction Page 166

 Module 14 Functional Abstraction Page 167

The underlined portions of my-map
are the changes required to
account for the differences between
negate-list and compute-taxes

Map
Sunday, November 15, 2020 16:15

 Module 14 Functional Abstraction Page 168

Effects of my-map
(my-map f (list x_1 x_2 … x_n)) has the same effect as evaluating (list (f x_1) (f x_2) … f(x_n))•

Using my-map
We can use my-map to give short definitions of a number of functions we have written to
consume lists

•

The contract for my-map
my-map consumes a function and a list, and produces a list•

 Module 14 Functional Abstraction Page 169

Abstract list functions that produce values
The functions we have worked with so far consume and produce lists•
What about abstracting from functions such as count-symbols and sum-of-numbers, which
consume lists and produce simple values?

•

Similarities and differences
Each example has a base case which is a value to be returned when the list supplied is empty•
Each example is applying some function to combine (first lst) and the result of a recursive
function application with argument (rest lst)

•

Comparison to the list template

We replace the first ellipsis by a base value•
We replace the rest of the ellipses by some function which combines (first lst) and the result of
a recursive function application on (rest lst)

•

This suggests passing the base value and the combining function as parameters to an abstract
list function

•

base value

combine

Foldr
Tuesday, November 17, 2020 17:38

 Module 14 Functional Abstraction Page 170

combine: a function that combines two values, the first thing on the list and
the result of processing the rest of the list

base: a value to provide when we hit the base case

 Module 14 Functional Abstraction Page 171

foldr
foldr is short for "fold right"•
The reason for the name is that it can be viewed as "folding" a list using the provided combine
function, starting from the right-hand end of the list

•

Contract for foldr
(X Y -> Y) Y (listof X) -> Y•

 Module 14 Functional Abstraction Page 172

Using foldr
The function provided to foldr consumes two parameters - one is an element in the list which is
an argument to foldr, and one is the result of reducing the rest of the list

•

Sometimes one of those arguments should be ignored, as in the case of using foldr to compute
count-symbols

•

The first argument to the function provided to foldr contributes 1 to the count. Its actual value is
irrelevant

•

In this case, the function provided to foldr can ignore the value of the first parameter and just
add 1 to the result of recursing on the rest.

•

The function provided to foldr, namely•

ignores its first argument
Its second argument is the result of recursing on the rest (rror) of the list. In this case it is the
length of the rest of the list, to which 1 must be added

•

Using foldr to produce lists
So far, the funcitons we have been providing to foldr have produced numerical results, but they
can also produce cons expressioons

•

foldr is an abstraction of simple recursion on lists, so we should be able to use it to implement
negate-list, which takes the first element from the list, negates it, and cons it onto the result of
the recursive function application

•

We need to define a function (lambda (x rror) …) that combines x and rror where x is the first
element of the list and rror is the result of the recursive function application on the rest of the
list.

•

 Module 14 Functional Abstraction Page 173

We'll start using the terminology non-
recursive function to mean a function
that doesn't use recursion at all or any
recursion is done via an abstract list
function such as foldr.

empty is the base case

 Module 14 Functional Abstraction Page 174

my-filter using foldr
One approach is to make this code match the structure of foldr so we can identify the values to
pass to foldr as the base and the combining function

•

We start by moving the last two question/answer pairs into an else clause•

Next, make the contents of the else clause into a function•

The last three lines match foldr. We can now use foldr by passing empty to base and the
function maybe-cons to the combining function

•

my-filter does not look much
like the code for foldr yet

 Module 14 Functional Abstraction Page 175

function maybe-cons to the combining function
•

We also see that maybe-cons is a function that is only used once and can therefore be
replaced with a lambda expression

•

Summary: ALFs vs. the list template
Anything that can be done with the list template can be done using foldr, without explicit
recursion (unless it ends the recursion early, like insert)

•

Experienced Racket programmers still use the list template, for readability and maintainability•

 Module 14 Functional Abstraction Page 176

foldl
The differences between these two functions are

the initial value of the accumulator○

the computation of the new value of the accumulator, given the old value of the accumulator and

•

Foldl
Friday, November 20, 2020 22:27

 Module 14 Functional Abstraction Page 177

the computation of the new value of the accumulator, given the old value of the accumulator and
the first element of the list

○

Tracing my-foldl

 Module 14 Functional Abstraction Page 178

Intuitively, the effect of the application (foldl f b (list x_1 ... x_n-1 x_n)) is to compute the value of the
expression (f x_n (f x_n-1 (... (f x_1 b))))

•

foldr and foldl may give the same or different results.•

In general, if the tcombining operation is commutative, foldr and foldl will generate the same result•
In these examples, + is commutative but string-append is not•

foldl
foldl is short for "fold left"•
The reason for the name is that it can be viewed as "folding" a list using the provided function, starting •

 Module 14 Functional Abstraction Page 179

The reason for the name is that it can be viewed as "folding" a list using the provided function, starting
from the left-hand end of the list

•

Contract: (X Y -> Y) Y (listof X) -> Y•

 Module 14 Functional Abstraction Page 180

Deriving build-list
Another useful built-in ALF is build-list.•
It consumes a natural number n and a function f, and produces the list•

Examples:•

build-list abstracts the "count up" pattern, and it is easy to write our own version.•

Contract: Nat (Nat -> X) -> (listof X)

Build-list
Friday, November 20, 2020 23:57

 Module 14 Functional Abstraction Page 181

foldr and build-list are both built-in, so
we do not trace them

We split the summation into two parts,
each handled by an ALF

The first part is a list of f applied to
each of the numbers in 0, 1, …, n-1,
handled by build-list

The second part is summing them up,
handled by foldr.

 Module 14 Functional Abstraction Page 182

 Module 14 Functional Abstraction Page 183

Generative recursion
Simple and accumulative recursion are ways to derive code whose form parallels a data definition•
In generative recursion, the recursive cases are generated based on the problem to be solved•
The non-recursive cases also do not follow the data definition•
It is much harder to come up with such solutions to problem. And it often requires deeper analysis
and domain-specific knowledge

•

Example revisited: GCD

Why does this work?•
Correctness: Math 135 proof•
Termination: An application terminates if it can be reduced to a value in finite time•

Introduction
Sunday, November 22, 2020 20:13

 Module 15 Generative Recursion Page 184

Termination of recursive function
Why did our functions using simple recursion terminate?•
A simple recursive function always makes recursive applications on smaller instances, whose
size is bounded below by the base case (e.g. the empty list)

•

We can thus bound the depth of recursion, the number of applications of the function before
arriving at a base case

•

As a result, the evaluation cannot go on forever•

Depth of recursion example

The depth of recursion of any application of sum-list is equal to the length of the list to which it is
applied

•

Termination of euclid-gcd
In the case of euclid-gcd, our measure of progress is the size of the second argument•
If the first argument is smaller than the argument, the first recursive application switches them,
which makes the second argument smaller

•

After that, the second argument always gets smaller in the recursive application, but it is bounded
below by 0

•

Thus, any application of euclid-gcd has a depth of a recursion bounded by the second argument•

Termination
Sunday, November 22, 2020 21:08

 Module 15 Generative Recursion Page 185

Hoare's Quicksort
The quicksort algorithm is an example of divide and conquer

divide a problem into smaller subproblems○

recursively solve each one○

combine the solutions to solve the original problem○

•

Quicksort sorts a list of numbers into non-decreasing order by first choosing a pivot element from the list•
The subproblems consist of the elements less than the pivot, and those greater than the pivot•

Pivot and subproblems
The easiest pivot to select from a list lon is (first lon)•
A function which tests whether another item is less than the pivot is (lambda (x) (< x (first lon)))•
The first subproblem is then (filter (lambda (x) (< x (first lon))) lon)•
A similar expression will find the second subproblem (numbers greater than the pivot)•

Quicksort termination
Termination of quicksort follows from the fact that both subproblems have fewer elements than the
original list (since neither contains the pivot)

•

Thus, the depth of reursion of an application of my-quicksort is bounded above by the number of
elements in the argument list

•

This would not have been true if we had mistakenly written•

instead of the correct

Built-in quicksort
The built-in function quicksort consumes two arguments, a list and a comparison function•

Quicksort
Sunday, November 22, 2020 21:09

 Module 15 Generative Recursion Page 186

 Module 15 Generative Recursion Page 187

Modifying the design recipe
The design recipe becomes much more vague when we move away from data-directed design•
The purpose statement remains unchanged, but additional documentation is often required to
describe how the function works

•

Examples are needed to illustrate the workings of the algorithm•
We cannot apply a template since there is no data definition•
For divide and conquer algorithms, there are typically tests for the easy cases that do not require
recursion, followed by the formulation and recursive solution of subproblems, and then combination
of the solutions

•

Design recipe
Sunday, November 22, 2020 21:49

 Module 15 Generative Recursion Page 188

Example: breaking strings into lines
Computer character sets include not only alphanumeric characters and punctuation, but "control"
character as well

•

Example in Racket: #\newline•
\n appearing in a string constant is interpreted as a single newline character•
The string "ab\ncd" is is a five-character string with a newline as the third character. It would typically
be printed as "ab" on one line and "cd" on the next line

•

Getting started
Consider converting a string such as "one\ntwo\nthree" into a list of strings, (list "one" "two" "three"),
one for each line

•

The solution will start with an application of string->list•
This problem can be solved using simple recursion on the resulting list of characters, but it will be hard•
In this case the generative solution is easier•

The generative idea
Instead of thinking of the list of characters as a list of characters, think of it as a list of lines•

A list of lines is either empty or a line followed by a list of lines•
Start with helper functions that divide the list of characters into the first line and the rest of the lines•

Example
Tuesday, November 24, 2020 14:31

 Module 15 Generative Recursion Page 189

Using local just to give names to the first line and the rest of the lines
The core of the template is the cond expression, which looks a lot like the
listof-X template

base case: when loc is empty, produce an empty list of lines

 Module 15 Generative Recursion Page 190

Generative recursion
Why is this generative recursion?•
loc->lol can be rewritten as•

The recursive call to loc->lol is not using the data definition for a list of characters•
It often gets many steps closer to the base case in one recursive application•
It is using a data definition of a "list of lines", but there is a higher-level abstraction that we imposed on
top of the (listof Char), the actual argument

•

The key part of the generative recursion pattern is that the argument to loc->lol is being generated by
rest-of-lines

•

When we use generative recursion, we need to be careful about termination•
Why does string-> lines always terminate?•
Each recursive call is applied to (rest-of-lines loc) where loc is non-empty, but rest-of-lines produces
either empty (which leads directly to termination in loc->lol) or a list of characters that is at least one
character shorter

•

Therefore, the length of the argument to loc->lol is always decreasing until it becomes empty and the
function terminates

•

base case: when loc is empty, produce an empty list of lines

fline is a list of characters, so convert it to string
with list->string. Then cons it on to (loc->rlines)
(loc->lol rlines) produces a list of strings, each one
corresponding to a line

Because the argument rlines to loc->lol
is many steps closer to the base case

 Module 15 Generative Recursion Page 191

 Module 15 Generative Recursion Page 192

Directed graphs
A directed graph consists of a collection of nodes (also called vertices) together with a collection
of edges

•

An edge is an ordered pair of nodes, which we can represent by an arrow form one node to
another

•

In a directed graph, each edge has a direction (indicated by the head of each arrow)•
In an undirected graph, edges do not have directions•
Evolution trees and expression trees were both directed graphs of a special type where an edge
represented a parent-child relationship

•

Graph terminology
Given an edge (v,w), we say that w is an out-neighbour of v, and v is an in-neighbour of w•
A sequence of nodes v1, v2, …, vk is a path or route of length k-1 if (v1, v2), (v2, v3), …, (vk-1, vk) are
all edges

•

If v1 = vk, this is called a cycle•
Directed graphs without cycles are called DAGs (directed acyclic graphs)•

Intro
Thursday, November 26, 2020 22:43

 Module 16 Graphs Page 193

Representing graphs
We can represent a node by a symbol (its name), and associate with each node a list of its out-
neighbours

•

This is called the adjacency list representation•
More specifically, a graph is a list of pairs, each pair consisting of a symbol (the node's name) and
a list of symbols (the names of the node's out-neighbours)

•

This is very similar to a parent node with a list of children•

Representation
Thursday, November 26, 2020 23:00

 Module 16 Graphs Page 194

A Graph is a (listof X) where X is a two element list (a pair)•
Each pair contains a node name (a symbol), and a list of out-neighbours (a list of symbols)•
The order of the pairs does not matter. The order of the list of symbols does not matter. •
The order of the node and its associated out-neighbours in a pair does matter•
We often put the list of nodes in alphabetical order•
Make sure that each node, v, is only listed once in the list of nodes•

 Module 16 Graphs Page 195

The code assumes that the provided node is in the graph

It produces an error if the requirement fails

 Module 16 Graphs Page 196

Finding paths
A path in a graph can be represented by an ordered list of the nodes on the path•
We wish to design a function find-path that consumes a graph plus origin and destination nodes, and
produces a path from the origin to the destination, or false if no such path exists

•

Cases for find-path
Simple recursion does not work for find-path. We must use generative recursion•
If the origin equals the destination, the path consists of just this node•
Otherwise, if there is a path, the second node on that path must be an out-neighbour of the origin node•
Each out-neighbour defines a subproblem (finding a path from it to the destination)•

Building a path from a solved sub-problem
In our example, any path from A to H must pass through C, D or E•
If we knew a path form C to H, from D to H, or from E to H, we could create one from A to H•

Backtracking algorithms
Backtracking algorithms try to find a path from an origin to a destination•
If the initial attempt does not work, such an algorithm "backtracks" and tries another choice•
Eventually, either a path is found, or all possibilities are exhausted, meaning there is no path•
Recall: search-bt-path-v1 searches for a path in the left side of a binary tree. If it there is no path, it
"backtracks" and searches the right side of the binary tree

•

Paths v1
Thursday, November 26, 2020 23:37

 Module 16 Graphs Page 197

Backtracking in this example
In this example, we can see the "backtracking" since the search for a path from A to H can be seen as
moving forward in the graph looking for H

•

If this search fails (for example, at C), then the algorithm "backs up" to the previous node and tries the
next neighbour

•

If we find a path from D to H, we can just cons A to the beginning of this path•

Exploring the list of out-neighbours
We need to apply find-path on each of the out-neighbours of a given node•
The neighbours function gives us a list of all the out-neighbours associated with that node•
This suggests writing find-path/list which consumes a list of nodes and will apply find-path to each one
until it either finds a path to the destination or exhausts the list

•

Mutual recursion
This is the same recursive patter that we saw in the process of expression trees and evolutionary trees•
For expression trees, we had two mutually recursive functions, eval and apply•
Here, we have two mutually recursive functions, find-path and find-path/list•

 Module 16 Graphs Page 198

 Module 16 Graphs Page 199

Termination of find-path (no cycles)
In a directed acyclic graph, any path with a given origin will recurse on its (finite number) of neighbours
by way of find-path/list
The origin will never appear in this call or any subsequent calls to find-path. If it did, we would have a
cycle in our DAG

•

Thus, the origin will never be explored in any later call, and thus the subproblem is smaller•
Eventually, we will reach a subproblem of size 0 (when all reachable nodes are treated as the origin)•
Thus find-path always terminates for directed acyclic graphs•

Non-termination of find-path (cycles)
It is possible that find-path may not terminate if there is a cycle in the graph•

 Module 16 Graphs Page 200

 Module 16 Graphs Page 201

Paths v2: Handling cycles
We can use accumulative recursion to solve the problem of find-path possibly not terminating if there are cycles in the
graph

•

To make backtracking work in the presence of cycles, we need a way of remembering what nodes have been visited•
Our accumulator will be a list of visited nodes•
The simplest way to do this is to add a check in find-path/list•

find-path/list's accumulator
The code for find-path/list does not add anything to the accumulator, but it uses the accumulator•
Adding to the accumulator is done in find-path/acc which applies find-path/list to the list of neighbours of some origin
node

•

That origin node must be added to the accumulator passed as an argument to find-path/list•

The new parameter accumulates the nodes
that have been visited so far

If find-path/list comes to a neighoburing node
that has already been visited, we skip it and
go on to the next neighbour on the list

Paths v2
Monday, November 30, 2020 17:32

 Module 16 Graphs Page 202

Added the visited parameter to
accumulate the nodes visited so far

This is a generative recursion that happens to also use an accumulator

Updating the accumulator by
adding the current origin and
passing it to find-path/list

 Module 16 Graphs Page 203

This example has no cycles, so the trace convinces us that we have not broken the function on acyclic graphs•
It also works on graphs with cycles•
The accumulator ensures that the depth of recursion is no greater than the number of nodes in the graph, so find-path
terminates

•

Cycle is solved, but…
Backtracking now works on graphs with cycles, but it can be inefficient, even if the graph has no cycles•
If there is no path from the origin to the destination, then find-path will explore every path from the origin, and there
could be an exponential number of them

•

 Module 16 Graphs Page 204

could be an exponential number of them
•

 Module 16 Graphs Page 205

Paths v3: Efficiency
If there is no path from the origin to the destination, then find-path will explore every path from the origin, and
there could be an exponentail number of them

•

If there are d diamonds, then tehre are 3d+2 nodes in the graph, but 2d paths from D1 to Y, all of which will be
explored

•

Understanding the problem (1/2)
Applying find-path/acc to origin D1 results in find-lath/list being applied to '(D1a D1b), and then find-path/acc
being applied to origin D1a

•

There is no path from D1a to Z, so this will eventually produce false, but in the process, it will visit all the other
nodes of the graph except D1b and Z

•

find-path/lsit will then apply find-path/acc to D1b, which will visit all the same nodes again•
We added an acucmulator to keep track of all the nodes we have visted and not revisit any tahat are on the
list. However, the accumulator is forgetful when find-path backtracks

•

Understanding the problem (2/2)
When find-path/list is applied to the list of nodes nbrs, it first applies find-path/acc to (first nbrs) and then, if that
fails, it applies itself to (rest nbrs)

•

To avoid revisiting nodes, the failed computation should pass the list of nodes it has seen on to the next
computation

•

It will do this by returning the list of visited nodes instead of false when it fails to find a path•
However, we must be able to distinguish this list from a successfully found path, which is also a list of nodes•

Remembering what the list of nodes represents
We will encapsulate each kind of list in its own structure•
We can then easily use the structure predicates to check whether the list of nodes represents a path (success)
or visited nodes (failure)

•

Paths v3
Tuesday, December 1, 2020 15:03

 Module 16 Graphs Page 206

 Module 16 Graphs Page 207

 Module 16 Graphs Page 208

