Values

Saturday, September 12, 2020 20:26

So far our only values have been numbers, abbreviated Num in contracts
We've identified several subtypes: Int for integers and Nat for natural numbers

The literal representations of Booleans, Symbols and Strings:
e Boolean: true, false
e Symbol: a "word" that begins with a single quote such as 'earth or ‘female
e String: characters (other than ") surrounded by double-quotes: "This is a string"

A literal is the way you write something down.
E.g. The literal for the number seven is 7.
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Booleans

Saturday, September 12, 2020 20:37

Boolean-valued functions

A function that tests whether two numbers x and y are equal has two
possible Boolean values: true and false.

An example application: (= x y)

This is equivalent to determining whether the mathematical
proposition "x=y" is true or false.

Standard Racket uses #t and #true for true, and similarly, #f and #false
for false.

Note: You should always use true and false

The sample application will give an error unless x and y have been
defined.

(define x 3)
(define y 4)
(=xy)

Other types of comparisons

(<xy)

(>xy)

(<=xy)

(>=xy)

Comparisons are functions which consume two numbers and produce
a Boolean value.

A sample contract:

:: = Num Num — Bool

Complex relationships

and, or and not are used to test complex relationships.

Example: "3 <= x < 7" is represented as

(and (<= 3 x) (< x 7))

and and or are actually special forms, like define. They look like
functions but actually are not because their arguments are not
evaluated before the "function” is applied

Computational differences

The mathematical AND and OR connect two propositions

In Racket, and and or may have more than two arguments

and has value true exactly when all of its arguments have value true
or has value true exactly when at least one of its arguments has value
true
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e not has value true exactly when its one argument has value false

Short-circuit evaluation
e DrRacket only evaluates as many arguments of and and or as is
necessary to determine the value.
Examples:
;» Eliminate easy cases first; might not need to do
;3 the much slower computation of prime?
(and (odd? x) (> x 2) (prime? x))

;3 Is the line considered "steep"?
(define (steep? delta-x delta-y)
(or (= delta-x 0) ; Avoid dividing by zero
(>= (/ delta-y delta-x) 1)))

(define (not-steep? delta-x delta-y)
(and (not (= delta-x 0)) ; Avoid dividing by zero
(< (/ delta-v delta-x) 1)))

¢ In the second example above, once the (= delta-x 0) is evaluated to be
true, the function will output true and stop since or only needs one true

value
¢ In the third example above, once the (= delta-x 0) is evaluated to be

true, the function will output false and stop since and stops evaluating
once there is a false value
e This practice is sometimes called short circuiting

Predicates
e A predicate is a function that produces a Boolean result.

e Some built-in predicates in Racket: even?, negative? and zero?

e Examples of user-defined functions:
(define (between? low high numb)
(and (< low numb) (< numb high)))

(define (can-vote? age)
(>= age 18))

e Predicate names ending with a question mark is a convention
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Conditionals

Saturday, September 12, 2020 22:14

Conditional expressions
e In Racket, we can computer [x| with the conditional expression:

(cond [(< x 0) (- x)]
[(>= x 0) x])

e Conditional expressions use the special form cond.

e Each argument is a question/answer pair.

e The question is a Boolean expression.

e The answer is a possible value of the conditional expression.
e Square brackets are used by convention, for readability.

e abs is a built-in function in Racket.

e Properly nested brackets: [ () ].

e Improperly nested brackets: [ (]]or [ (]).

e Here is a function my-abs because Racket won't let us redefine the
built-in function.

(define (my-abs x)
(cond [(< x @) (- x)]
[(>= x 0) x]))

General form
e The general form of a conditional expression is:

(cond [questionl answerl]
[question2 answer2]

[questionk answerk])

The questions are evaluated in top-to-bottom order

As soon as one guestion is evaluated to true, no further questions are
evaluated

Only one answer is ever evaluated

An error is produced if no question evaluates to true

Example
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0 when x =0
f(x) =
xsin(1/x) when x # 0

(define (f x)
(cond [(= x 0) 0]
[else (= x (sin (/ 1 x)))1))

Simplifying conditional expressions
e Sometimes a question can be simplified by knowing that if it is asked,
all previous questions have evaluated to false
o Example:

Here are the common recommendations on which course to take after CS 135,
based on the CS135 mark earned.

@ 0% < mark < 40%: CS 115 is recommended
@ 40% < mark < 50%: CS 135 is recommended
@ 50% < mark < 60%: CS 116 is recommended
@ 60% < mark: CS 136 is recommended

We might write the tests for the four intervals this way:

(define (course-after-csl35 grade)
(cond [(< grade 40) 'C5115]
[{and (== grade 408) (< grade 50)) 'C5135]
[(and (== grade 508) (< grade 68)) 'C5116]
[(>= grade 68) 'CS5136]))

e The code shown is a straight-forward and correct implementation of
the conditions.
e But when (>= grade 40) is evaluated in the second question/answer
pair, we already know that grade is at least 40.
e Because of Racket's top-to-bottom evaluation of a cond, the function
will output 'CS115 and stop if the grade is less than 40.
e Similarly, we cannot reach the third question/answer pair unless the
grade is at least 50.
e Simplifying three of the tests:
(define (course-after-csl135 grade)
(cond [(< grade 40) 'C5115]
[(< grade 50) 'C5135]
[(< grade 60) 'C5116]
[else 'C5136]))
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Tests

Monday, September 14, 2020 10:47

Tests for conditional expressions
o Write at least one test for each possible answer in the expression
e Should be simple and direct, aimed at testing that answer
¢ When the problem contains boundary conditions (like the cut-off between passing and
failing), they should be tested explicitly
e Example:

(define (course-after-cs135 grade)
(cond [(< grade 40) 'CS115]
[(< grade 50) 'CS135]
[(< grade 60) 'CS116]
[else 'CS136]))

There are four intervals and three boundary points, so seven tests are required
For instance, 30, 40, 45, 50, 55, 60, 70

Testing and and or
e Consider

;3 Is the line considered "steep"?
(define (steep? dx dy)

(or (= dx 0)
(>= (/ dy dx) 1)))
e We need:

o one test case where dx is zero (first argument is true; second is not evaluated)

o one test case where dx is nonzero and dy/dx >= 1 (first false; second true)

o one test case where dx is nonzero and y/x < 1 (both false)

e More generally,

o or: enough tests to make the expression true for each clause and one that makes the
entire expression false

o and: enough tests to make the expression false for each clause and one that makes
the entire expression true

Closed-box vs. Open-box testing
» Closed-box tests are some of the tests, including the examples, that have been defined
before the body of the function was written
e Open-box tests may depend on the code, for example, to check specific answers in
conditional expressions
e Both types of tests are important

Note: use check-expect for all tests
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Example

Monday, September 14, 2020 17:08

Purpose: Compute the Canadian tax payable on a specified income.
Background:

@ 15% on the amount in [$0, $45,000] -
@ 20% on the amount in ($45,000, $90,000] Payetie
@ 25% on the amount in ($90,000, $150,000]
@ 30% on the amount in ($150,000, $200,000]
@ 35% on the amount over $200,000

Taxable

Note: These amounts are rounded from the i
actual amounts to make discussing them easier.

The "piecewise linear" nature of the graph complicates the computation of tax payable.
One way to do it uses the breakpoints (x-value or salary when the rate changes) and base
amounts (y-value or tax payable at breakpoints).

A

Tax
Payable

-+ total tax payable

-+ base amount

>
+income Taxable

Income

breakpointf

Examples:
Income Tax Calculation
$40,000 0.15%40000 = 6000
$60,000 0.15%45000 + 0.20 * (60000 — 45000) = 6750 + 3000 = 9750
$100,000 0.15%45000 + 0.20 = (90000 — 45000) + 0.25 x (100000 — 90000)
= 6750 + 9000 + 2500 = 18250

(check-expect (tax-payable 40000) (x 0.15 40000))
(check-expect (tax-payable 60000) 9750)
(check-expect (tax-payable 100000) 18250)

Definition header & contract
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;; tax-payable: Num — Num
HH requires: income >= 0

Finalize purpose
;; (tax-payable income) computes the Canadian tax payable on income.

Some constants will be useful. Put these before the purpose and other design recipe elements.

;» Rates

(define
(define
(define
(define
(define

;3 Breakpoints in increasing order by income
ratel 0.15) (define bpl 45000)
rate2 0.20) (define bp2 90000)
rate3 0.25) (define bp3 150000)
rate4 0.30) (define bp4 200000)
rate5 0.35)

Instead of putting the base amounts into the programs as numbers, we can compute them from the
breakpoints and rates

;; Base Amounts

;; basei is the base amount for interval [bpi,bp(i+l)]
;; that is, tax payable at income bpi

(define basel (* (- bpl 0) ratel))

(define base2 (+ basel (* rate2 (- bp2 bpl))))

(define base3 (+ base2 (x rate3 (- bp3 bp2))))

(define base4 (+ base3 (* rated4 (- bp4 bp3))))

Developing tax-payable
;5 tax-payable: Num — Num
;; Requires: income >= 0
(define (tax-payable income)
(cond [(< income bpl) (* ratel income)]

[(< income bp2) (+ basel (* rate2 (- income bpl)))]
[(< income bp3) (+ base2 (* rate3 (- income bp2)))]
[(< income bp4) (+ base3 (* rated4 (- income bp3)))]
[else (+ based4 (* rate5 (- income bp4)))]))

At least 9 tests are needed for the preceding code (5 intervals and 4 boundaries)

Helper functions
e There are many similar calculations in the tax program, leading to the definition of the following
helper function:
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;» (cum-tax base rate low high) calculates the cumulative tax owed
i where base 1s the tax owed on income up to low and rate 1is
B the tax rate on income between low and high.

s ocum-tax: Num Num Num Num — Num
;3 Requires base >= 0, rate >=0, 0 <= low <= high
(define (cum-tax base rate low high)
(+ base (* rate (- high low))))
e tax-payable with a helper function
;; Base Amounts
(define basel (cum-tax 0 ratel 0 bpl))
(define base2 (cum-tax basel rate2 bpl bp2))
(define base3 (cum-tax base2 rate3 bp2 bp3))
(define base4 (cum-tax base3 rated4 bp3 bp4))

(define (tax-payable income)
(cond [(< income bpl) (cum-tax 0@ ratel © income)]
[(< income bp2) (cum-tax basel rate2 bpl income)]
[(< income bp3) (cum-tax base2 rate3 bp2 income)]
[(< income bp4) (cum-tax base3 rated4 bp3 income)]
[else (cum-tax based4 rate5 bp4 income)]))

Helper functions are used for three purposes
e Reduce repeated code, sometimes referred to as "DRY", "Don't Repeat Yourself'. Being DRY
reduces the amount of code you need to write, debug and maintain
e Factor out complex calculations, giving a separate function that is usually easier to test

e Give names to operations. Having meaningful names in the code also helps with chunking
things.

Style guidelines:
e Improve clarity with short definitions using well-chosen names
e Name all functions (including helpers) meaningfully; not "helper"
e Purpose, contract and one example are required
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Other data

Wednesday, September 16, 2020 9:39

Symbolic data
» Racket allows one to define and use symbols with meaning to us
e A symbol is defined using an apostrophe: 'CS115
'CS115 is a value just like O or 115, but is more limited computationally
e Symbols allow a programmer to avoid using constants to represent
names
e Symbols can be compared using the predicate symbol=?

(define home 'Earth)

(symbol=? home 'Mars) = false

e The contract for symbol=? is Sym Sym -> Bool. It consumes two
symbols and produces a Boolean result

e Unlike numbers, symbols are self-documenting. You don't need to
define constants for them

Characters
e A character is most commonly a printed letter, digit, or punctuation
symbol
e a, G, ., +and 8 are all characters

e Other characters represent less visible things like a tab or a newline in
text
e They are the simplest component of a string

Strings
e Strings are sequences of characters between double quotes
o Differences between strings and symbols
o Strings are compound data (a sequence of characters)
o Symbols cannot have certain characters in them (such as spaces)
o More efficient to compare two symbols than two strings
o More built-in functions for strings
e A few functions which operate on strings:
(string=? "alpha" "bet") = false
(string<? "alpha" "bet") = true
(string-append "alpha" "bet") = "alphabet"
(string-length "perpetual") = 9
(string-upcase "Hello") = "HELLO"

Symbols vs. strings
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Use symbols when a small, fixed number of labels are needed (e.g.
planets) and comparing labels for equality is all that is needed.

Use strings when the set of values is more indeterminate (e.g. names
of students) or when more computation is needed (e.g. comparison in
alphabetical order)

When these types appear in contracts, they should be capitalized and
abbreviated: Sym and Str

Symbols are like multiple choice. Strings are like short answer

General equality testing

Every type seen so far has an equality predicate (= for numbers,
symbol=? for symbols, string="? for strings)

The predicate equal? has a contract of Any Any -> Bool. It can be used
to test the equality of two values which may or may not be of the same
type.

(= 10 11) = false

(string=? "10" "10") = true

(= 10 "10") = Error

(equal? 10 "10") = false

equal? works for all types of data we have seen so far (except inexact
numbers)

(symbol=? 'blue 100) breaks the contract so it will produce an error
(equal? 'blue 100) will produce false

Do not overuse equal? Use = for numbers, symbols=? for symbols and
strings=" for strings.
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Modelling

Wednesday, September 16, 2020 10:49

Modelling programming languages

A program has a precise meaning and effect.

If you run a program multiple times with exactly the same inputs, it better do the
same thing every time

A model of a programming language provides a way of describing the meaning
of a program.

It provides a way of understanding something, in this case a program.

It is not necessarily the way DrRacket will execute the program, but it provides a
way to predict the result that is easier for humans to understand than the
internals of DrRacket
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Spelling

Wednesday, September 16, 2020 11:23

Spelling rules for Beginning Student
e |dentifiers are the names of constants, parameters and user-defined
functions.
e They are made up of
o letters
o hyphens
o underscores
o a few other punctuation marks
o at least one non-number
e They can't contain spaces or any of these: () []{},;
e Symbols start with a single quote ' followed by something obeying the
rules for identifiers.

Module 5 Semantics Page 13



Semantics intro
Wednesday, September 16, 2020 11:41

Syntax, semantics and ambiguity:

There are three problems we need to address:
1. Syntax: The way we're allowed to say things
2. Semantics: the meaning of what we say
3. Ambiguity: valid sentences have exactly on meaning

In Racket, we need rules that always avoid these problems

Grammars
e We can use grammars to enforce syntax and avoid ambiguity
e For example, an English sentence can be made up of a subject, verb
and object, in that order.
e We might express this as follows

(sentence) = (subject) (verb) (object)

e The textbook describes function definitions like this
(def) = (define ( (var) (var) ... (var)) (exp))

e The Help Desk presents the same idea as
definition = (define (id id id ...) expr)
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Semantic model

Wednesday, September 16, 2020 12:14

Racket's semantic model
e A semantic model of a programming language provides a method of predicting the result of
running any program
e Our model will repeatedly simplify the program via substitution
e A substitution step finds the leftmost subexpression eligible for rewriting
e Every substitution step yields a valid program in full Racket, until all that remains is a
seqguence of definitions and values

Application of built-in functions
e We reuse the rules for the arithmetic expressions we are familiar with to substitute the
appropriate value for expressions like (+ 3 5) and (expt 2 10)

(+ 35)=28
(expt 2 10) = 1024

e Formally, the substitution rule is

(f vl ... vn) = vwhere f is a built-in function and v is the value of f(v4,..., vj). |

e Essentially, the rule says that we just "know" what the built-in functions do from early grade
school or by reading the DrRacket documentation

Ellipses
For built-in functions f with one parameter, the rule is:
(f v1) = v where v is the value of f(v4)

For built-in functions f with two parameters, the rule is:
(f vl v2) = v where v is the value of f(v4, v»)

For built-in functions f with three parameters, the rule is:
(f vl v2 v3) = v where v is the value of f(vq, vz, v3)

We can't just keep writing down rules forever, so we use ellipses to show a pattern:
(f v1 ... vn) = vwhere v is the value of f(vy,..., vp).

Application of user-defined functions
e Any argument which is not a value must first be simplified to a value using the rules for
expressions
e We cannot claim to just "know" what a user-defined function does, so we need a new rule
e The general substitution rule is:
(f vi ... vn) = exp'
where (define (f x1 ... xn) exp) occurs to the left, and exp' is obtained by
substituting into the expression exp, with all occurrences of the formal parameter
xi replaced by the value vi (for i from 1 to n).

e Note: we are using a pattern ellipsis in the rules for both built-in and user-defined functions

Module 5 Semantics Page 15



to indicate several arguments

Example:
e A Racket program is read top-to-bottom, left-to-right. That is,

(define (foo x y) (+ x x y))
(foo 1 2}

is read as
(define (foo x y) (+ x x y)) (foo 1 2)
e Evaluating (foo 1 2) means substituting the first argument (1) wherever the first parameter

(x) occurs in the body expression and doing similarly for the second argument/parameter.
e The expression we get (+ 1 1 2) will be substituted back in place of (foo 1 2)

(define (foo x y) (+ x x y)) (foo 1 2) =>
(define (foo x y) (+ x xy)) (+ 11 2)

e Recall that => means "yields" and separates one substitution step from another

Another Example:
(define (term x y) (* x (sqr y)))

(term (- 3 1) (+1 2))
= (term 2 (+ 1 2))

= (term 2 3)

= (% 2 (sqr 3))

= (x 2 9)

= 18

Constant definition
e A constant definition binds a name (the constant) to a value (the value of the expression)
e \We add the substitution rule:
id = val
where (define id val) occurs to the left. J

e Function definitions are always in simplest form and not further reduced, not always the
case with constant definitions
 If the expression starts as (define p (* 3 3)) the (* 3 3) must be simplified to 9 first

Example
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To avoid a lot of repetition, we adopt the

(:e?ne x 3) . convention that we stop repeating a definition
; :> ine y (+ x 1)) once its expression has been reduced to a
(datiBe % 3) value (since it cannot change after that).
(dze:ine y (+ 3 1}) (define x 3)
)(/define - (define y (+ x 1))

. y ﬁ
)((d:e:me y 4) (define y (+ 3 1))

- y =>
.
4 L

4

Substitution in cond expressions

e There are three rules: when the first expression is false, when it is true and when it is else

(cond [false exp] ...) = (cond ...) J
(cond [true exp] ...) = exp J
(cond [else exp]) = exp |

e These suffice to simplify any cond expression

e Here the ellipses are serving a different role. They are showing an omission. The first rule
just says "Whatever else appeared after the [false exp], you copy it over"

e Rule #2 - choose the leftmost subexpression to simplify

e |t means that the question part of a cond's question/answer pair will always to be reduced to
either true or false before we apply one of the three rules for cond

e cond is a special form. The arguments are not necessarily evaluated. In this case the
guestion argument is evaluated but the answer argument is not

Example:

(define n 5) (define x 6) (define y 7)

(cond [(even? n) x][(odd? n) yl)

= (cond [(even? 5) x] [(odd? n) y])
= (cond [false x][(odd? n) vy])

= (cond [(odd? n) y])

= (cond [(odd? 5) y])

= (cond [true y])

=Y

= 7

If y is not defined:
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(define n 5) (define x 6)

(cond [(even? n) x][(odd? n) y])

= (cond [(even? 5) x] [(odd? n) y])
= (cond [false x][(odd? n) y])

= (cond [(odd? n) vy])

= (cond [(odd? 5) y])

= (cond [true y])

=Y

= y: this variable is not defined

DrRacket's rules differ. It scans the entire cond expression before it starts, notes that y is not
defined, and shows an error.

Errors
e A syntax error occurs when a sentence cannot be interpreted using the grammar. It occurs
in the Read phase of REPL. Some examples are:
o misspellings
o missing parentheses
o invalid function applications
Example: (10 + 1)
e Arun-time error occurs when an expression cannot be reduced to a value by application of
our evaluation rules. It occurs during the Evaluation phase of REPL.
Some examples are:
o division by zero
o a cond with no question that returns true
o running out of memory
Example:

(cond [(> 3 4) x])

= (cond [false x])

= (cond )

= cond: all question results were false

Substitution rules for and and or
e The simplification rules we use for Boolean expressions involving and and or are different
from the ones the Stepper in DrRacket uses
e The end result is the same, but the intermediate steps are different
e The rules:
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(and false ...) = false

(and true ...) = (and ...)

(and) = true

(or true ...) = true

(or false ...) = (or ...)

(or) = false

As in the rewriting rules for cond, we are using an omission ellipsis.

Substitution rules (so far)
1 Apply functions only when all arguments are values.

2 When given a choice, evaluate the leftmost expression first.
3 (f vl...vn) = vwhen fis built-in...

4 (f vl...vn) = exp' when (define (f x1...xn) exp) occurs to the left...
5 id = val when (define id val) occurs to the left.

6 (cond [false exp] ...) = (cond ...)
7 (cond [true exp] ...) = exp

8 (cond [else exp]) = exp

9 (and false ...) = false

10 (and true ...) = (and ...)

11 (and) = true

12 (or true ...) = true

13 (or false ...) = (or ...)

14 (or) = false
Summary

e Doing a step-by-step reduction according to these rules is called tracing a program
e |tis an important skill in any programming language or computational system
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Lists Introduction

Friday, September 18, 2020 19:54

Introducing lists
e Alistis a recursive structure - it is defined in terms of a smaller list.
e Consider a list of concerts:
o A list of 4 concerts is a concert followed by a list of 3 concerts
o A list of 3 concerts is a concert followed by a list of 2 concerts
o Alist of 2 concerts is a concert followed by a list of 1 concerts
o Alist of 1 concerts is a concert followed by a list of O concerts
e A list of zero concerts is special. We call it the empty list. It is represented in
Racket by empty.
e |n general, a list of n items is an item followed by a list of n-1 items.

Examples:

A sad state of affairs — no upcoming concerts to attend:

(define concerts0 empty)

A list with one concert to attend:

(define concertsl (cons "Waterboys" Water-
empty)) boys

A new list just like concerts1 but with a new concert at the beginning:

(define concerts2 (cons "DaCapo" e Water-
concertsl)) abapo | poys

e Lists can be built up, one item at a time, with cons. The simplest list is the empty
list, signified by the value empty. Every list we build adds additional items to an
empty list.

e Lists can be bound to constants. For example, concertsO and concertsl

e The empty list is shown as a solid black bar. It appears at the end of every list.
Elements of a list are shown as boxes

e Lists are typically drawn with empty on the right. The first item to be added will be
right beside it. The most recently added item will be on the left. This also matches
the order in which the Racket code is written

e Lists may look like arrays but they are not. The computer can access the ith
element of arrays but cannot with lists. Lists are more restrictive but have other
advantages.

Another wav to write concerts2: | T il
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Another way to write concerts2:

(define concerts2alt (cons "DaCapo"

(cons "Waterboys"
empty)))

A list with one U2 and two DaCapo concerts:

(define concerts3 (cons "U2"
(cons "DaCapo"

(cons "DaCapo"
empty))))

Basic lists constructs
e empty: a value representing an empty list

Extracting values from a list
(define clst (cons "U2"

DaCapo

Water-
boys

U2

DaCapo

DaCapo

(cons v Ist): consumes a value and a list; produces a new, longer list
(first Ist): consumes a non-empty list; produces the first value
(rest Ist): consumes a non-empty list; produces the same list without the first value
(empty? v): consumes a value; produces true if it is empty and false otherwise
(cons? v): consumes a value; produces true if it is a cons value and false otherwise
(lists? v): equivalent to (or (cons? v) (empty? v))

(cons "DaCapo" (cons "Waterboys" empty))))

First concert:
(first clst) = "U2"

Concerts after the first:

(rest clst) = (cons "DaCapo" (cons "Waterboys" empty))

Second concert:
(first (rest clst)) = "DaCapo"

U2

DaCapo

Water-
boys

The primary tools for extracting values from a list are first and rest. They may be used

in combination to extract any value in the list.

Simple functions on lists
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Using these built-in functions, we can write our own simple functions on lists.

;5 (next-concert loc) produces the next concert to attend or
3 the empty string if loc is empty

;; Examples:

(check-expect (next-concert (cons "a" (cons "b" empty))) "a")
(check-expect (next-concert empty) "")

;; next-concert: (listof Str) — Str
(define (next-concert loc)
(cond [(empty? loc) ""]
[else (first loc)]))

e This function should handle any list of concerts, which includes the empty list

e Applying first to an empty list produces an error, so we need to test for the empty
list and handle it specially

e Note that the examples make use of the “concerts” “a” and “b” to keep them more
concise

;5 (same-consec? loc) determines if next two concerts are the same
;; Examples:

(check-expect (same-consec? empty) false)

(check-expect (same-consec? (cons "a" empty)) false)

(check-expect (same-consec? (cons "a" (cons "a" empty))) true)
(check-expect (same-consec? (cons "a" (cons "b" empty))) false)

;; same-consec?: (listof Str) — Bool
(define (same-consec? loc)
(and (not (empty? loc))
(not (empty? (rest loc)))
(string=? (first loc) (first (rest loc)))))

 |f a function produces a Boolean value it may be more natural to write the body as
a Boolean expression

e A first attempt is to check if the first element of the list (first loc) is the same as the
second element, (first (rest loc))

 If there are either zero or one concerts it fails when either first or rest is applied to
an empty list

e The function makes use of short-circuit evaluation to avoid those errors. The order
of the arguments to and matters. The check for whether loc is empty must come
first
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e The four images at the bottom of the slide illustrate the four examples

Contracts involving lists
e What is the contract for (next-concert loc)?
e We could use "List" for loc
e However, we almost always need to answer the question "List of what? Numbers?
Strings? Any type?"

Notation in contracts
e We will use (listof X) in contracts, where X may be replaced with any type.
e Examples:
o (listof Str)
o (listof Num)
o (listof Bool)
o (listof Any)
e Replace X with the most appropriate type available
e (listof X) always includes the empty list, empty
e The left side of the contract should be as general as possible. If your function can
correctly process a list of numbers, use (listof Num) rather than (listof Int) or (listof
Nat)
e The right side of the contract as specific as possible. If your function always
produces a natural number, use Nat in the contract rather than Int or Num
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Formalities

Tuesday, September 22, 2020 13:53

Values
e List values are either
o empty
o (cons v l) where v is any Racket value (including list values) and | is a list
value (which includes empty)
* Note that values and expressions look very similar

Value: (cons 1 (cons 2 (cons 3 empty)))

Expression: (cons 1 (cons (+ 1 1) (cons 3 empty)))

* Racket list values are traditionally given using constructor notation - the same
notation we would use to construct value

Expressions
e The following are valid expressions
(cons el e2) where el and e2 are expressions
(firstel)
(rest el)
(empty? el)
(cons? el)
(list? el)
e The slide "Basic list constructs" specified that the function cons consumes any
value and a list value
e Or contracts:
o cons: Any (listof Any) -> (listof Any)
o first: (listof Any) -> Any (requires the list to be non-empty)
o ...

e cons can also be provided by expressions. For example:

O O O O O

(@)

(define 1st (cons 1 (cons 2 (cons 3 empty))))
(cons (first (rest 1st)) (rest 1lst))

This is a valid expression because (first (rest Ist)) and (rest Ist) are both valid
expressions

Substitution rules
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The substitution rules are:

(first (cons a b)) = a, where a and b are values.
(rest (cons a b)) = b, where a and b are values.

°

Q

@ (empty? empty) = true.

@ (empty? a) = false, where a is any Racket value other than empty.
°

(cons? (cons a b)) = true, where a and b are values.

@ (cons? a) = false, where a is any Racket value not created using cons.

There is no substitution rule for cons because of its role in list values.
If we included it, it would be (cons a b) => (cons a b) where a is a value and b is a list

Data definitions and templates
e The structure of a function often mirrors the structure of the data it consumes. As
we encounter more complex data types, we will find it useful to be precise about
their structures.

* We will do this by developing data definitions

e We can even develop function templates based on the data definitions of the
values it consumes

List data definition
e Informally: a list of strings is either empty, or consists of a first string followed by a
list of strings (the rest of the list)

;3 A (listof Str) is one of:
v * empty
1 % (cons Str (listof Str))

e This is a recursive data definition because the definition refers to itself in at least
one case.
e A base case does not refer to itself

e We can generalize lists of strings to other types by using an X:
;7 A (Listof X) is one of:
;1 % empty
;7 * (cons X (Llistof X))

Templates and data-directed design
e The structure of a program often mirrors the structure of the data

o Atemplate is a general framework within which we fill in specifics. It is derived
from a data definition
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Template for processing a (listof X)
;3 A (listof X) is one of:

We start with the data definition for a
;3 % empty (listof X)

;3 % (cons X (listof X))

A function consuming a (listof X) will
need to distinguish between these

i
2
3
4
51];; (listof-X-template lox) PURPOSE o cases
6 | ;; Examples:

7 | (check-expect (listof-X-template empty) ANSWER)

8 | (check-expect (listof-X-template (cons X empty)) ANSWER)

9

10 | ;; listof-X-template: (listof X) —> Any Igge'ééiﬁirf?f‘fgtti?giﬁfetn? fillin
11 | (define (listof-X-template lox) ...

19 (cond [(empty? lox) ...] Because (rest lox) is of type (listof X),
we apply the same computation to it,

13 [(cons? . Lox) ... that is, we apply listof-X-template

14 gk LTICSE WOR) i

15 ... (listof-X-template (rest lox)) ...1))

16

n ;3 Tests|

e This is the template for a function consuming a (listof X)
e |ts form parallels the data definition
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Processing lists

Wednesday, September 23, 2020 14:28

Processing lists: how many concerts?

Problem: Write a function to count the number of concerts in a list of concerts.

We begin with writing the purpose, examples, contract, and then copying the
template and renaming the function and parameters.

;3 (count-concerts loc) counts the number of concerts in loc
;; Examples:

(check-expect (count-concerts empty) 0)

(check-expect (count-concerts (cons "a" (cons "b" empty))) 2)

;3 count-concerts: (listof Str) — Nat
(define (count-concerts loc)
(cond [(empty? loc) ...]
[else (... (first loc)
(count-concerts (rest loc)) ...)1]))

e Three crucial questions to think about functions consuming a list
o What does the function produce in the base case?
o What does the function do to the first element in a non-empty list?
o How does the function combine the value produced from the first element with
the value obtained by applying the function to the rest of the list?

> Thinking about list functions

;3 (count-concerts loc) counts the number of concerts in loc
;; Examples:

(check-expect (count-concerts empty) 0)

(check-expect (count-concerts (cons "a" (cons "b" empty))) 2)

7 count-concerts: (listof Str) — Nat
(define (count-concerts loc)
(cond [(empty? loc) 0]
[else (+ 1 (count-concerts (rest loc)))]))

e This is a recursive function. It uses recursion

e A function is recursive when the body of the function involves an application of the
same function.
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> Tracing count-concerts

(count-concerts (cons "a" (cons "b" empty)))
= (cond [(empty? (cons "a" (cons "b" empty)) 0]
[else (+ 1 (count-concerts
(rest (cons "a" (cons "b" empty)))))])
= (cond [false 0]
[else (+ 1 (count-concerts
(rest (cons "a" (cons "b" empty)))))])
= (cond [else (+ 1 (count-concerts
(rest (cons "a" (cons "b" empty)))))])
= (+ 1 (count-concerts (rest (cons "a" (cons "b" empty)))))
= (+ 1 (count-concerts (cons "b" empty)))
= (+ 1 (cond [(empty? (cons "b" empty)) 0]
[else (+ 1 (count-concerts (rest (cons "b" empty))))]))

= (+ 1 (cond [false 0]
[else (+ 1 (count-concerts (rest (cons "b" empty))))]))

= (+ 1 (cond [else (+ 1 (count-concerts (rest (cons "b" empty))))]))
= (+ 1 (+ 1 (count-concerts (rest (cons "b" empty)))))

= (+ 1 (+ 1 (count-concerts empty)))

= (+1 (+ 1 (cond [(empty? empty) 0]

[else (+ 1 (count-concerts (rest empty)))])))
= (+ 1 (+ 1 (cond [true O][else (+ 1 (count-concerts (rest empty)))])))
= (+1(+10))
= (+ 1 1)
=32

Condensed traces
e The full trace contains too much detail, so we instead use a condensed trace of
the recursive function
¢ |t shows the important steps and skips over the trivial details

Termination
e Itis important that our functions always terminate (stop running and produce an
answer)
¢ Why does count-concerts always terminate?
e There are two conditions
o Base case - produces 0 and immediately terminates
o Recursive case - applies count-concerts to a shorter list. Each recursive
application is to a shorter list, which must eventually become empty and
terminate

Thinking recursively
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e The similarity of recursion to induction suggests a way to develop recursive
functions

o Get the base case right

o Assume that your function correctly solves a problem of size n (e.g. a list with
n items)

o Figure out how to use that solution to solve a problem of size n+1
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Templates

Wednesday, September 23, 2020 21:09

Refining the (listof X) template

e Sometimes, each X in a (listof X) may require further process
 Indicate with a template for X as a helper function
» We assume this generic data definition and template from now on

;3 Listof-X-template: (listof X) — Any

(define (listof-X-template lox)

(cond [(empty? lox) ...]
[else (... (X-template (first lox))
(listof-X-template (rest lox)) ...)1]))

Templates as generalizations
e A template provides the basic shape of the code as suggested by the
data definition

Module 6 Lists Page 30



Patterns
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Patterns of recursion
¢ The list template has the property that the form of the code matches
the form of the data definition
e This is called simple recursion

Simple recursion
e In simple recursion, every argument in a recursive function application
IS either
o unchanged
o one step closer to a base case according to the data definition

(define (func lst) ... (func (rest lst)) ...) ;; Simple
(define (func lst x) ... (func (rest lst) x) ...) ;; Simple
(define (func 1st x) ... (func (process lst) x) ...) ;; NOT Simple

(define (func 1lst x)
(func (rest lst) (math-function x)) ...) ;; NOT Simple

¢ In the first example, the only argument is one step closer to the base
(Ist with the first element removed).

o A list that is one item shorter is not "one step closer to the base
case" unless it is shorter because it is missing the first element.
o Remove the second element does not count.

e The second example is like the first except there is an additional
parameter that is passed along unchanged. The count-string is an
example

¢ In the third example, process is meant to capture doing something to
Ist other than removing the first element.

In the fourth example, math-function applied to x indicates that x is
changed
In both cases, the function is no longer simple recursion
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Lists from lists

Wednesday, September 23, 2020 21:41

Some built-in functions in Racket

¢ |n addition to the ones we’ve already covered (cons, first, rest, empty?,
cons?, list?), the useful ones are append, length, member?, remove,
and reverse.

e Don’t use append, remove, and reverse until we introduce them.

e Functions that begin with ‘c’, end with ‘r and have a mixture of ‘a’s and
'd’s in between are historical relics from Lisp. An example is caddr.

e The updated versions in Racket are first, second, third, etc.

e firstis used A LOT. second ... eighth are used only very occasionally.
However, at this point in the course you are only allowed to use first

Producing lists from lists
e Consider negate-list, which consumes a list of numbers and produces
the same list with each number negated

;3 (negate-list lon) produces a list with every number in lon negated

;; Examples:

(check-expect (negate-list empty) empty)

(check-expect (negate-list (cons 2 (cons -12 empty)))
(cons -2 (cons 12 empty)))

;3 negate-list: (listof Num) — (listof Num)
(define (negate-list lon)
(cond [(empty? lon) ...]
[else (... (first lon) ... (negate-list (rest lon)) ... )]))

1. What should the function produce in the base case?
This is answered by the first example.

2. What does the function do to the first element in a non-empty list?

In this case, negate it. We already have (first lon) to get the first
element. All we need to do is add (- ...) around it.

3. How does the function combine the value produced from the first
element with the value obtained by applying the function to the rest of
the list?

In count-concerts we combined 1 and the recursive
application using +. To combine a value with a list, we use cons
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;3 (negate-list lon) produces a list with every number in lon negated
;; Examples:
(check-expect (negate-list empty) empty)
(check-expect (negate-list (cons 2 (cons -12 empty)))
(cons -2 (cons 12 empty)))

;5 negate-list: (listof Num) — (listof Num)
(define (negate-list lon)
(cond [(empty? lon) empty]
[else (cons (- (first lon)) (negate-list (rest lon)))]))

Non-empty lists
e Some computations make sense only with a non-empty list (ne-listof
X). For example, finding the maximum of a list of numbers
¢ A non-empty list of X (ne-listof X) is either
o (cons X empty)
o (cons X (ne-listof X))

Module 6 Lists Page 33



Design Recipe Refine

Wednesday, September 23, 2020 22:28

Design recipe refinements
 When we introduce new types, we need to include it in the design
recipe
e For each new type, place the following someplace between the top of
the program and the first place the new type is used
o The data definition
o The template derived from that data definition
e Assignments do not need to include the data definition or template for
(listof X)
» (ne-listof X) and other types should be included in assignments, unless
the assignment states otherwise

Summary: Data definition and template
e Every data definition will have a name (e.g. (listof X)) that can be used
in contracts
In a self-referential data definition
o at least one clause will use the definition's name to show how to
build a larger version of the data (recursive case)
o at least one clause must not use the definition's name (base case)

;3 A (listof X) is one of:
v % empty
i3 % (cons X (listof X))

e The template follows directly from the data definition

e The overall shape of a self-referential template will be a cond
expression with one clause for each clause in the data definition

o Self-referential data definition clauses lead to recursive expressions in
the template

e Base case clauses will not lead to recursion
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Strings

Thursday, September 24, 2020 19:07

Strings and list of characters

o Text is usually represented in a computer by strings

¢ In Racket, a string is a sequence of characters in disguise
string->list is a built in function to convert a string to an explicit list of characters
list->string does the reverse. It converts a list of characters into a string
Racket's notation for the character 'a' is #\a
The result of evaluating (string->list "test”) is the list

(cons #\t (cons #\e (cons #\s (cons #\t empty))))

Counting characters in a string

> Counting characters in a string

Write a function to count the number of occurrences of a specified character in a
string. Start by counting the occurrences in a list of characters.

;3 (count-char/list ch loc) counts the number of occurrences

J This function
v of ch in loc.

consumes a
i+ Examples: character
(check-expect (count-char/list #\e (string=list "")) 0) (abbreviated Char)

(check-expect (count-char/list #\e (stringslist "beekeeper")) 5) anda (listof Char)
(check-expect (count-char/list The characters in
#\o (cons #\f (cons #\o (cons #\o (cons #\d empty))))) 2) the list do not
have any specific
;3 count-char/list: Char (listof Char) — Nat meaning, so we

: . named the
(define (count-char/list ch loc) ... ) paracter based on

its structure, loc.
;+ (count-char/list ch loc) counts the number of occurrences
3} 87 £ 3in Lee.
;; Examples:
(check-expect (count-char/list #\e (string-list "")) 0)
(check-expect (count-char/list #\e (string-list "beekeeper")) 5)

:: count-char/list: Char (listof Char) — Nat mﬁgﬂigﬂiﬁi;ader
(define (count-char/list ch loc) we are counting, count
(Cond [(empty" lOC) 0] 1. Else count 0.

) Whichever it is, add with
[else (+ (cond [(char=? ch (first loc)) 1] the result of processing

[else 0]) the rest of the list.
(count-char/list ch (rest loc)))]))

;5 count-char/list: Char (listof Char) -»> Nat

L R A I R e I ) T Annthar wwav tn etriictiira
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;3 count-char/list: Char (listof Char) -»> Nat

(define (count-char/list ch loc) Another way to structure
this function.

(cond
[ (empty? loc) @]
[ (char=? ch (first loc)) (+ 1 (count-char/list ch (rest loc)))]
[else (count-char/list ch (rest loc))]))

;3 count-char/list: Char (listof Char) -> Nat

(define (count-char/list ch loc) A thrid version. This
d works but is
( con considered poor style
P because it can be
[ (Elﬁpt}-" : ].DC) B] trivially transformed in
[ alse to the simpler and

. dable cod
(cond [(char=? ch (first loc)) shown above,

(+ 1 (count-char/list ch (rest loc)))]
[else
(count-char/list ch (rest loc))])]))

Wrapper functions
» A wrapper function is a simple function that "wraps" the main function and takes care of details like
converting the string to a list
e count-char is a wrapper function for count-char/list

;3 (count-char ch s) counts the number of occurrences
s 4 of ch in s.

;; Examples:

(check-expect (count-char #\e "") 0)

(check-expect (count-char #\e "beekeeper") 5)
count-char basically
does the same thing as

. . count-char/list but its
;» count-char: Char Str — Nat oarameter s a string.
(define (count-char ch s) |
: : : It calls count-char/list by
(count-char/list ch (string=list s))) passinginthelist

version of the string

e Wrapper functions
o are short and simple
o always call another function that does much more
o set up the appropriate conditions for calling the other function, usually by transforming one or more of
its parameters or providing a starting value for one of its arguments
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Review
Monday, September 28, 2020 21:04

Review
e Recall the data definition for a list:

i A (listof X) 1is one of:
y3 % empty
1 % (cons X (listof X))

e Given (cons 5 (cons 3 (cons 29 empty))) we can use the data definition

to work backwards, proving that it is a (listof Int).
 In fact, with the built-in predicate integer? we can write a function that
determines whether its argument is a list of integers

;3 (listof-int? x) produces true if x is (listof Int) and
i false otherwise.
;3 Examples:
(check-expect (listof-int? empty) true)
(check-expect (listof-int? (cons 1 (cons 2 empty))) true)
(check-expect (listof-int? (cons "a" empty)) false)
(check-expect (listof-int? "A string") false)
;3 listof-int?: Any -»> Bool
(define (listof-int? x)
(cond [{(empty? x) true]
[(cons? x) (and (integer? (first x))
(listof-int? (rest x)))]
[else false]))

e Recall the template for a list:
;3 listof-X-template: (listof X) — Any
(define (listof-X-template 1lst)
(cond [(empty? 1lst) ...]
[else (... (first 1lst)
(listof-X-template (rest 1lst))

e We can repeat this reasoning on a recursive definition of natural
numbers to obtain a template.
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Data definition and template

Monday, September 28, 2020 21:41

Natural numbers:
e Data definition:

;+ A Nat 1s one of:
i x 0
i3 % (addl Nat)
e addl is the built-in function that adds 1 to its argument

e The natural numbers start at O in computer science
e Template:

;; nat-template: Num — Any
(define (nat-template n)
(cond [(zero? n) ...]
[else (... n ...

(nat-template (subl n)) ...)]))

e Suppose we have a natural number n.

e The test (zero? n) tells us which case applies

e If (zero? n) is false, then n has the value (add1 k) for some k

e To compute k, we subtract 1 from n, using the built-in sub1 function

e Because the result (subl n) is a natural number, we recursively apply
the function

Example: a decreasing list
e Goal: countdown, which consumes a natural number n and produces a
decreasing list of all natural numbers less than or equal to n

Goal: countdown, which consumes a natural number n and produces a decreasing

list of all natural numbers less than or equal to n.
(countdown 0) = (cons 0 empty) 0
(countdown 1) = (cons 1 (cons 0 empty)) 1 0
(countdown 2) = (cons 2 (cons 1 (cons O empty)))

2 1 0
With these examples, we proceed by filling in the template.

¢ We have some crucial questions to answer:
o What do we produce in the base case?
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(cons 0 empty))
o In the recursive case, what do we do to transform n?
In this case, we does nothing to n
o What is the result of processing (f (subl1 n)) recursively?

(countdown (subl n)) should be the list of natural numbers from
n-1 down to n

o How do we combine steps 2 and 3 to obtain the result for (f n)?

We cons the result of step 2 (n) onto the result of step 3
(countdown (sub1l n))
e Function Implementation:

;; (countdown n) produces a decreasing list of Nats from n to ©
;+ Example:

(check-expect (countdown @) (cons @ empty))

(check-expect (countdown 2) (cons 2 (cons 1 (cons 0 empty))))

;3 countdown: Nat — (listof Nat)
(define (countdown n)
(cond [(zero? n) (cons 0 empty)]
[else (cons n (countdown (subl n)))1))
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Intervals
Monday, September 28, 2020 22:38

Intervals of natural numbers
e The symbol Z is often used to denote the integers
e We can add subscripts to define subsets of the integers (aka
intervals)
For example, Z-q defines the non-negative integers, also known as the natural
numbers.

Other examples: Z.4, Z. g, Z<1.

Example: Z>=7
 If we change the base case test from (zero? n) to (= n 7), we can stop
the countdown at 7
e This corresponds to the following definition

;3 An integer in Z>7 is one of:
v 7
v1ox (addl Z>7)

e We use this data definition as a guide when writing functions, but in
practice we use a requires section in the contract
e countdown-to-7
;3 (countdown-to-7 n) produces a decreasing list from n to 7
;; Example:
(check-expect (countdown-to-7 9) (cons 9 (cons 8 (cons 7 empty))))

;3 countdown-to-7: Nat — (listof Nat)
s requires: n > 7
(define (countdown-to-7 n)
(cond [(= n 7) (cons 7 empty)]
[else (cons n (countdown-to-7 (subl n)))1))

Generalizing countdown
e We can generalize countdown by providing the base value (e.g. 0 or 7)
as a second parameter b (the base)
e The parameter b has to be passed unchanged in the recursion
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;3 (countdown-to n base) produces a decreasing list from n to base
;; Example:
(check-expect (countdown-to 4 2) (cons 4 (cons 3 (cons 2 empty))))

;; countdown-to: Int Int — (listof Int)
g requires: n >= base
(define (countdown-to n base)
(cond [(= n base) (cons base empty)]
[else (cons n (countdown-to (subl n) base))]))

e This function also works if the inputs are negative numbers, as long as
n>=base

(countdown-to 1 -2)
= (cons 1 (cons O (cons -1 (cons -2 empty))))
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Counting up
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Counting up
* What if we want an increasing count?
» Consider the non-positive integers Z<=o

73 A integer in Z<o is one of:
}q % @
i1 * (subl Z<o)

e Examples: -1 is (subl 0), -2 is (sub 1 (subl1 0))
e If aninteger iis of the form (subl k), then k is equal to (add1 i)

Template
» Notice the additional requires section

;» nonpos-template: Int — Any
;3 requires: n < 0 —
(define (nonpos-template n)
(cond [(zero? n) £.]
[else (... n

e countup:

(nonpos-template (addl n))

;3 (countup n) produces an increasing list from n to 0

;; Example:

(check-expect (countup -2) (cons -2 (cons -1 (cons O empty))))

;3 countup: Int — (listof Int)
s requires: n <= 0
(define (countup n)
(cond [(zero? n) (cons O empty)]

[else (cons n (countup (addl n)))]))

» As before, we can generalize this to counting up to b, by introducing b as a second parameter in a

template
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;3 (countup-to n base) produces an increasing list from n to base
;; Example:
(check-expect (countup-to 6 8) (cons 6 (cons 7 (cons 8 empty))))

;3 countup-to: Int Int — (listof Int)
3 requires: n <= base
(define (countup-to n base)
(cond [(= n base) (cons base empty)]
[else (cons n (countup-to (addl n) base))]))

e YOou may not use reverse on assignments unless stated otherwise
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Sorting

Wednesday, September 30, 2020 19:24

Filling in the list template
;3 (sort lon) sorts the elements of lon in non-decreasing order
(check-expect (sort (cons 2 (cons O (cons 1 empty)))) ...)

;3 sort: (listof Num) — (listof Num)
(define (sort lon)
(cond [(empty? lon) ...]
[else (... (first lon)
(sort (rest lon)) ...)1))

If the list lon is empty, so is the result.
Otherwise, the template suggests doing something with the first element of the list, and the sorted
version of the rest

;3 (sort lon) sorts the elements of lon in non-decreasing order
(check-expect (sort (cons 2 (cons 0 (cons 1 empty)))) ...)

;5 sort: (listof Num) — (listof Num)
(define (sort lon)
(cond [(empty? lon) empty]
[else (insert (first lon)
(sort (rest lon)))1))

insert is a recursive helper function that consumes a number and a sorted list, and inserts the number
into the sorted list

The helper function insert
e We again use the list template for insert

;3 (insert n slon) inserts the number n into the 'sorted list slon...
;; Examples:

(define test-result (cons 1 (cons 2 (cons 3 empty))))

(check-expect (insert 1 empty) (cons 1 empty))

(check-expect (insert 1 (cons 2 (cons 3 empty))) test-result)
(check-expect (insert 2 (cons 1 (cons 3 empty))) test-result)

;5 insert: Num (listof Num) — (listof Num)
§ s requires: slon is sorted in ‘non-decreasing order
(define (insert n slon)
(cond [(empty? slon) ...]
[else (... (first slon)
(insert n (rest slon)) ...)1))

¢ If slon is empty, the result is the list containing just n
¢ If slon is not empty, another conditional expression is needed
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e nis the first number in the result if it is less than or equal to the first number in slon (<= n (first slon))
e Otherwise, the first number in the result is the first number in slon, and the rest of the result is what
we get when we insert n into (rest slon) (insert n (rest slon))

(define (insert n slon)
(cond [(empty? slon) (cons n empty)]
[(<= n (first slon)) (cons n slon)]
[else (cons (first slon) (insert n (rest slon)))l))

(insert 4 (cons 1 (cons 2 (cons 5 empty))))
= (cons 1 (insert 4 (cons 2 (cons 5 empty))))
= (cons 1 (cons 2 (insert 4 (cons 5 empty))))
= (cons 1 (cons 2 (cons 4 (cons 5 empty))))|

e This algorithm is known as insertion sort
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List abbreviations

Wednesday, September 30, 2020 20:54

List abbreviations
e The expression

(cons expl (cons exp2 (... (cons expn empty)...)))
can be abbreviated as
(list expl exp2 ... expn)

e The result of (sort (cons 4 (cons 2 (cons 3 (cons 5 empty)))) can be expressed as
(list 1 2 4 5). The application itself can be expressed as (sort (list 4 2 1 5))
 Difference between cons and list:
o A list built with cons will explicitly show the empty at the end of the list
o A list built with list will not show the empty
* We use list to construct a list of fixed size. And we use cons to construct a list from one new element (first)
and a list of arbitrary size
» (second my-list) is an abbreviation for (first (rest my-list)). third, fourth and so on up to eighth are also
defined. Use these sparingly to improve readability.

Exercise 2

@ You want to add one more element to the list 1st. Do you use
(cons elem lst) or (list elem lst)? What's the difference between them?

@ Why is (list 1 2) legal but (cons 1 2) is not?
@ What's the difference between (cons 1 empty) and (list 1 empty)?

1. (cons elem Ist) because Ist is a list of arbitrary size
2. cons takes any value and a list value
3. (cons 1 empty) has one element, (list 1 empty) has two elements
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Exercise 3

What is the length of:

(list (list "hat" "beots") “ceat"
(list 32.3 (list "mitts")) empty "scarf")

Determine the answer by hand, then use the length function to check your answer.

length =5
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Lists of lists

Friday, October 9, 2020 23:22

Lists containing lists

Here are two different two-element lists.

12| 3 4|

We now know two different ways to construct these lists:

(cons 1 (cons 2 empty)) (list 1 2)
(cons 3 (cons 4 empty)) OR (list 3 4)

Lists can contain anything, including other lists, at which point these abbreviations
can improve readability.
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 Remember that in (cons v Ist), v is a value. Any value.
e (cons 1 (cons 2 empty)) is a value. As a value, it can be put into a list just like any
other value

> Lists containing lists

Here is a one-element list whose single element
is one of the two-element lists we saw above.

As before, we now know two different ways we could construct this.

(cons (cons 3 (cons 4 empty)) (list (list 3 4))
empty) OR

When the thing a list contains is complicated, we

may draw an arrow to it, as shown on the right.

This visualization represents the same list as the !

n ve.

one above 3 4 I
Sorting List abbrev Lists of lists Dictionaries 2D data Processing two lists List & number
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» Lists that contain lists are hard to draw when the whole value (a list) goes in a box,
so we're introducing a new diagramming convention (bottom diagram)

> Lists containing lists

We can create a two-element list, each of whose elements is itself a two-element
list. These are two different visualizations of the same list.

OR
a1l |
> 3 | 4 I
Such a list can be created in code 1] 2 I 7
two different ways: .
(cons (cons 1 (cons 2 empty)) OR (List (list 1 2)
(cons (cons 3 (cons 4 empty)) (list 3 4))

empty))

Clearly, the abbreviations are more expressive.
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> Example: processing a payroll

A company needs to process its payroll — a list of | l
employee names and their salaries. It produces a list of —l
each employee name and the tax owed. The tax owed P P
is computed with tax-payable from Module 04.
Payroll: Joseph | 100000
(list (list "Asha" 50000)
(list "Joseph" 100000) \ 4
(Llist "Sami" 7000)) Sami 10000'
TaxRoll:

(list (list "Asha" 7750)
(list "Joseph" 18250)
(list "Sami" 1050))

Asha 50000I Joseph | 100000 I Sami | 10000 I I
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» Data definitions

>

;3 A Payroll is one of:
HH empty
33 (cons (list Str Num) Payroll)

*

*

>

TaxRoll is one of:
b empty
£ (cons (list Str Num) TaxRoll)

*

*

Note the use of (list Str Num) rather than (listof X).

¢ A payroll is the same as a (listof X) where X is a two-element list that we represent
with (list Str Num). The first element is a string and the second is a number.
Because the data definition has been made more specific, we give it a specific
name: Payroll.

« Intuitively, an empty list is a Payroll. If you want a longer Payroll, cons the name of
an employee and their salary onto a Payroll.

e Recap of (list ...) vs (listof ...)

o Use (list ...) for a fixed-length list.

(list ...) will have one type parameter for each element in the list

Use (listof ...) when the length of the list is unknown

(listof ...) will have exactly one argument: the type that every element in the

list will have

They are not interchangeable

O O O

o
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»ﬁTeﬁmrilﬁaté ﬁ

;3 (payroll-template pr)
;3 payroll-template: Payroll — Any
(define (payroll-template pr)
(cond [(empty? pr) ...]
[{cons? pr) ..., (first pr) ...
. (payroll-template (rest pr)) ...1))

A payroll is just a list, so this looks exactly like the (listof X) template — so far...

e The list's first item is known to be of the form (list Str Num)
¢ Reflect that fact in the template

o reminds us of all the data available to us

o allow us to access the parts of the sublist

» Template

;3 (payroll-template pr)
;3 payroll-template: Payroll — Any
(define (payroll-template pr)
(cond [(empty? pr) ...]
[{cons? pr) (... (first (TifsSt pr)) ...
« (first (rest (first pr))) ...
. (payroll-template (rest pr)) ...)1))

Some short helper functions will make our code more readable.
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» Template

;3 (name lst) produces the first item from lst -- the name.

;3 name: (list Str Num) — Str

(define (name 1lst) (first 1lst))

;3 (amount lst) produces the second item from lst -- the amount.
;5 amount: (list Str Num) — Num

(define (amount 1st) (first (rest 1lst))) extract elements from the sublists

;3 (payroll-template pr)
;3 payroll-template: Payroll — Any
(define (payroll-template pr)
(cond [(empty? pr) ...]
[(cons? pr) (... (name (first pr))
(amount (first pr)) ...
(payroll-template (rest pr)) ...)1))

» Start design recipe; fill in template

;3 (compute-taxes payroll) calculates the tax owed for each
;3 employee/salary pair in the payroll.
(check-expect (compute-taxes test-payroll) test-taxes)

;3 compute-taxes: Payroll — TaxRoll
(define (compute-taxes payroll)
(cond [(empty? payroll) ...]
[(cons? payroll) (... (name (first payroll))
(amount (first payroll)) ...
. (compute-taxes (rest payroll)) ...)]))

Steps in the design recipe:
¢ Write the purpose
¢ Write some examples
¢ Write the header (rename payroll-template to something more problem-specific)
and contract (note the use of Payroll and Taxroll)
¢ Refine the purpose
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» Finish compute-taxes

;3 (compute-taxes payroll) calculates the tax owed for each
;; employee/salary pair in the payroll.
(check-expect (compute-taxes test-payroll) test-taxes)

;3 compute-taxes: Payroll — TaxRoll
(define (compute-taxes payroll)
(cond [(empty? payroll) empty]
[(cons? payroll)
(cons (list (name (first payroll))
(tax-payable (amount (first payroll))))
(compute-taxes (rest payroll)))]))

1. What do you do in the base case?
There are no taxes owed if no one earned a salary. The contract says to produce a
(listof X). empty fits both observations.

2. How do you transform the first element on the list?

Compute the taxes on the salary. Put that number together with the name into a
two-element list

3. What value is produced by the recursive processing of the rest of the list?

A list of taxes owed by the employees on the rest of the list

4. How to combine the value produced in 2 with the value produced in 3?

cons the newly calculated taxes owed to the beginning of the list
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» Alternate solution

(define (compute-taxes-alt payroll)
(cond [(empty? payroll) empty]
[(cons? payroll) (cons (sr—tr (first payroll))
(compute-taxes-alt (rest payroll)))]))

;3 (sr—tr salary-rec) consumes a salary record and produces the
;3 corresponding tax record
;3 sr—tr: (list Str Num) — (list Str Num)
(define (sr—tr salary-rec)
(list (name salary-rec) (tax-payable (amount salary-rec))))

« Auseful strategy is to break the problem into two parts
o the part that handles the list
o the part that handles one item from the list

e The overall structure of the code is simply the (listof-X-template) and allows one to
focus on the distinct part of how one item is handled

» Alternate templates leading to the second solution

;3 (payroll-template pr)
;3 payroll-template: Payroll — Any
(define (payroll-template pr)
(cond [(empty? pr) ...1]
[(cons? pr) (... (salary-rec-template (first pr)) ...
. (payroll-template (rest pr)) ...)1))

(define (salary-rec-template sr) (... (name sr) ... (amount sr) ...))
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Different kinds of lists

When we introduced lists in module 06, the items they contained were not lists.
These were flat lists.

We have just seen lists of lists. A Payroll is a list containing a two-element flat
list.

In later lecture modules, we will use lists containing unbounded flat lists.

We will also see nested lists, in which lists may contain lists that contain lists, and
so on to an arbitrary depth.
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Dictionaries

Friday, October 9, 2020 23:22

> Example dictionaries

More generally, a dictionary contains a number of unique keys, each with an
associated value.

Examples:

@ A dictionary: keys are words; values are definitions.

@ Your contacts list: keys are names; values are telephone numbers.
@ Course marks: keys are userids; values are marks.

@ Stocks: keys are symbols; values are prices.

Many two-column tables can be viewed as dictionaries. The previous examples
can all be viewed as two-column tables.
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¢ An important aspect of the definition is that keys are unique.
e Given a key, we can look it up in a dictionary and get at most one value (it's possible that the key is not here)
¢ Values, on the other hand, may be duplicated

> Dictionary operations

What operations might we wish to perform on dictionaries?

@ lookup: given a key, produce the corresponding value  sometimes called find or search
@ add: add a (key,value) pair to the dictionary sometimes called insert
@ remove: given a key, remove it and its associated value
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> Association lists

One simple solution uses an association list, Example:
which is just a list of (key, value) pairs.

We store the pair as a two-element list. For
simplicity, we will use natural numbers as keys
and strings as values.

(List (list 8 "Asha")
(list 2 "Joseph")
(list 5 "Sami"))

;; An association list (AL) is one of: I
;1 % empty
;3 % (cons (list Nat Str) AL) 8 AshaI
i 3 Requires: each key (Nat) is unique v
2 Joseph I

Y

5 Sami I
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¢ The advantage of an association list is that it is simple to implement.
e The disadvantage is being increasingly slow as the dictionary gets larger (has more entries)

> Association lists

We can create association lists based on other types for keys and values. We use
Nat and Str here just to provide a concrete example.

Since we have a data definition, we could use AL for the type of an association list,
as given in a contract.

Another alternative is to use (listof (list Nat Str)).
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e We could use (listof (list Num Str)) every place we need the data type, principally in contracts

e However, the term AL or "association list" helps the reader understand the intent of the parameter is probably to look
something up. The listof format does not convey that meaning
e This form also ignores the requirement that keys are unique
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> Constructing the at-template

We can use the data definition to produce a template.
;; al-template: AL — Any
(define (al-template alst)
(cond [(empty? alst) ...]
[else (... (first (first alst)) ... ; first key
(second (first alst)) ... ; first value
(al-template (rest alst)))]))

A better implementation (except for the lack of documentation):
(define (key kv) (first kv))

(define (val kv) (second kv))
(define (al-template alst)
(cond [(empty? alst) ...]
[else (... (key (first alst)) ... (val (first alst))
(al-template (rest alst)))]))

Helper functions make the code more
readable in the improved version
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> Lookup operation

Recall that Lookup consumes a key and a dictionary (associaticn list) and produces
the corresponding value when it's found. But what should lookup produce if it fails?

When the key is not found in the association list, we can not produce a string.
Every string, even "", is a valid value and might be the result of a successful
lookup. The “not found” condition needs to be distinguishable, from successful
searches. We'll use false to indicate failure.

(check-expect (lookup 2 (list (list 8 "Asha")
(list 2 "Joseph")
(list 5 "Sami")) "Joseph")
(check-expect (lookup 1 (list (list 8 "Asha")
(list 2 "Joseph")
(list 5 "Sami")) false)
Sorting List abbrev Lists of lists Dictionaries 2D data Processing two lists List & number
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> lookup Implementation

(define (key kv) (first kv))
(define (val kv) (second kv))

;3 (lookup-al k alst) produces the value corresponding to key Kk,
L or false if k not present

;3 lookup-al:
(define (lookup-al k alst)
(cond [(empty? alst) false]
[(= k (key (first alst))) (val (first alst))]
[else (lookup-al k (rest alst))]))

What is the contract for lookup-al?
We need a way to indicate that it can produce either a string or false.

e There are two base cases just like the insert function.
¢ For insert, the two base conditions were

o when we got to the end of the list

o when the item we were inserting belonged at the beginning of the list
e For lookup the two base cases are
o when we get to the end of the list
o when we find what we are looking for

> (anyof ...) notation in contracts

Use (anyof X Y ...) to mean any of the listed types or values.

Examples: ;; foo: Num — (anyof Str Bool Num)
@ (anyof Num Str) number or string (define (foo x)
_ (cond [(< x 0) "negative"]
@ (anyof Str Num Bool)  string, number or bool [(= x 0) false]
@ (anyof 1 2 3) 1,20r3 [(= x 1) true]

@ (listof (anyof Str false)) [else x]))
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Dictionaries: summary

We will leave the add and remove functions as exercises.

The association list solution is simple enough that it is often used for small
dictionaries.

For a large dictionary, association lists are inefficient. For example, consider the
case where the key is not present and the whole list must be searched.

In a future module, we will impose structure to improve this situation.
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Exercise 4

@ Implement add.

@ Implement remove.

@ How could you improve the performance of an association list if the dictionary
is large (using techniques from this lecture module)? Is there a way to avoid
search the whole list most of the time?
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2D data

Saturday, October 10, 2020 10:40

Two-dimensional data
e Another use of lists of lists is to represent a two-dimensional table.
e For example, a multiplication table:

(mult-table 3 4) =

(list (list 0 0 0 0)
(lList 0 1 2 3)
(list 0 2 4 6))

_r——h- 0 0 0 0 I

T [ L—| o 2 4 eI

e The ct" entry of the rth row (numbering from 0) isr x ¢

Make one row
o Make one row of the table but counting the columns from O up to nc,
doing the required multiplication for each one

;; (cols-to ¢ r nc) produces entries c...(nc-1) of rth row of mult. table
;; Example:

(check-expect (cols-to @ 3 5) (Llist © 36 9 12))

(check-expect (cols-to 0 4 5) (list 0 4 8 12 16))

;; cols-to: Nat Nat Nat — (listof Nat)
(define (cols-to ¢ r nc)
(cond [(>= c nc) empty]
[else (cons (*x r c¢) (cols-to (addl c) r nc))]))

 cols-to constructs one row for the multiplication table by calculating
what value each column should have

Put multiple rows together
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(mult-table nr nc) produces multiplication table
5 with nr rows and nc columns
;; Example:

.o
'

(define (mult-table nr nc)
(rows-to © nr nc))

(rows-to r nr nc) produces mult. table, rows r...(nr-1)
;; rows-to: Nat Nat Nat — (listof (listof Nat))
(define (rows-to r nr nc)
(cond [(>= r nr) empty]
[else (cons (cols-to O r nc) (rows-to (addl r) nr nc))]))

e In rows-to, the counter is called r. We make a whole row with cols-to
and cons that row onto the list. The result is a list of lists.

o mult-table is a wrapper function that calls rows-to with the correct
values.

T
'
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Processing two lists

Saturday, October 10, 2020 12:45

Processing two lists simultaneously
e We now look at a more complicated recursion, namely writing functions which consume two lists
(or two data types, each of which has a recursive definition)
¢ We will distinguish three different cases, and look at them in order of complexity.
e The simplest case is when one of the lists does not require recursive processing

Processing two lists simultaneously (annotation)
e Two parameters, each of which is a list

;53 twolist-template: (listof X) (listof X) -> Any -
(define (twolist-template 1stl 1st2) ... )

e Each of those two lists might be empty or not. Therefore, we might have something like this:

(define (twolist-template 1stl 1st2) -
(cond [(and (empty? 1stl) (empty? 1st2)) ...]
[(and (empty? 1st1) (cons? 1st2)) ...]
[(and (cons? 1stl) (empty? 1st2)) ...]
[(and (cons? 1stl) (cons? 1st2)) ...]1))

e We can actually break it down into three cases
o Process one list; the other goes along for the ride
o Both lists are the same length; one element from each is processed at each step
o The general case: unequal lengths, process one or the other or both

Case 1: processing just one list
* In the first case of processing two lists, we only actually process one. The second one just goes
along for the ride.
e That means that of the four tests identified above, we only need to consider two: whether the first
list is empty or not
e As an example, consider the function my-append
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> Case 1: processing just one list

As an example, consider the function my-append.

;3 (my-append lstl lst2) appends 1st2 to the end of lstl

;; Examples:

(check-expect (my-append empty (list 'a 'b 'c)) (list 'a 'b 'c))
(check-expect (my-append (list 3 4) (list 1 2 5)) (list 341 2 5))

;3 my-append: (listof Any) (listof Any) — (listof Any)
(define (my-append lstl 1st2)
v v)

» my-append

(define (my-append lstl lst2)
(cond [(empty? 1stl) lst2]
[else (cons (first lstl)
(my-append (rest lstl) 1st2))]))

The code only does simple recursion on 1st1.

The parameter 1st2 is “along for the ride”.

append is a built-in function in Racket.
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» A condensed trace

(my-append (list 1 2 3) (list 4 5 6))

= (cons 1 (my-append (list 2 3) (list 4 5 6)))

= (cons 1 (cons 2 (my-append (list 3) (list 4 5 6))))

= (cons 1 (cons 2 (cons 3 (my-append (list ) (list 4 5 6)))))
= (cons 1 (cons 2 (cons 3 (list 4 5 6)))

The last line is the same as
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 empty)))))).
That's the same as (list 1 2 3 4 5 6).
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Case 2: processing in lockstep

e To process two lists Istl and Ist2 in lockstep, they must be the same length and be consumed at
the same rate

e [stl is either empty or a cons, and the same is true of Ist2. This means that there are four
possibilities in total.

e However, because the two lists must have the same length, (empty? Istl) is true if and only if
(empty? Ist2) is true

e This means that only two of the possibilities are valid

e Example: dot product - multiplying entries in corresponding positions (first with first, second with
second and so on) and sum the results
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» dot-product

;3 (dot-product lonl lon2) computes the dot product

i3 of vectors lonl and lon2

(check-expect (dot-product empty empty) 0)

(check-expect (dot-product (list 2) (list 3)) 6)

(check-expect (dot-product (list 2 3 4 5) (list 6 7 8 9))
(+ 12 21 32 45))

;3 dot-product: (listof Num) (listof Num) — Num
¥ requires: lonl and lon2 are the same length
(define (dot-product lonl lon2)
(cond
[(empty? lonl) 0]
[else (+ (x (first lonl) (first lon2))
(dot-product (rest lonl) (rest lon2)))]))

» A condensed trace

(dot-product (list 2 3 4)

(list 56 7))
= (+ 10 (dot-product (list 3 4)

(List 6 7)))
= (+ 10 (+ 18 (dot-product (list 4)
(list 7))))
= (+ 10 (+ 18 (+ 28 (dot-product (list )
(list )))))

= (+ 10 (+ 18 (+ 28 0)))
= (+ 10 (+ 18 28))
= (+ 10 46)
= 56

Case 3: processing at different rates
e The third case is the most general where the lists may be of different lengths and may be
processed at different rates
* As a result, either one or both could be empty
e |f the two lists being consumed are of different lengths, four possibilities are possible
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(and (empty? lonl) (empty? lon2))
(and (empty? lonl) (cons? lon2))

(and (cons? lonl) (empty? lon2))

(and (cons? lonl) (cons? lon2))

e The first possibility is a base case; the second and the third may or may not be

» Refining the template

(define (twolist-template lonl lon2)
(cond
[(and (empty? lonl) (empty? lon2)) ...]
[(and (empty? lonl) (cons? lon2))

(.. (first lon2) ... (rest lon2) ...)]
[(and (cons? lonl) (empty? lon2))

(... (Tirst lonl) ... (rest lonl) ...)]
[(and (cons? lonl) (cons? lon2))

72?72 1))

The second and third possibilities may or may not require recursion.

The fourth possibility definitely requires recursion, but its form is unclear.
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 In the second and the third possibilities where one list is empty, we extract the first element and
the rest of the list for each non-empty list

e When one list is empty, it could be that all we need is the non-empty list without change. In this
case no recursion is needed

e But it could be that the non-empty list needs further processing, leading to recursion
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» Further refinements

There are many different possible natural recursions for the last cond answer ??77:

(- s (First Llonl)
(twolist-template (rest lonl) lon2))

(i ae (TErSE Lon2)
(twolist-template lonl (rest lon2)))

(e oo ATAFSTE lOAL) ... (Tirst lon2)
(twolist-template (rest lonl) (rest lon2)))

Which of these is appropriate depends on the specific problem we're trying to
solve and will require further reasoning.
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Example: merging two sorted lists
e Design a function merge that consumes two lists
Each list is sorted in ascending order (no duplicate values)
merge will produce one list containing all elements, also in ascending order
As an example:
(merge (list 1 8 10) (list 2 4 6 12)) = (list 1 2 4 6 8 10 12)

We need more examples to see how to proceed
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» Example: merging two sorted lists

;; Base cases

(check-expect (merge empty empty) empty)
(check-expect (merge empty (list 2 6 9)) (list 2 6 9))
(check-expect (merge (list 1 3) empty) (list 1 3))

;; Recursive cases
(check-expect (merge (list 1 4) (list 2)) (list 1 2 4))

(check-expect (merge (list 3 4) (list 2)) (list 2 3 4))

« If both lists are non-empty, the first element of the merged list would be the smaller of (first lon1)
and (first lon2)

e If (first lonl) is smaller, then the rest of the answer is the result of merging (rest lonl) and lon2

e If (first lon2) is smaller, then the rest of the answer is the result of merging lonl and (rest lon2)

» Merge code

(define (merge lonl lon2)
(cond [(and (empty? lonl) (empty? lon2)) empty]

[(and (empty? lonl) (cons? lon2)) lon2]

[(and (cons? lonl) (empty? lon2)) lonl]

[(and (cons? lonl) (cons? lon2))

(cond [(< (first lonl) (first lon2))
(cons (first lonl) (merge (rest lonl) lon2))]
[else (cons (first lon2) (merge lonl (rest lon2)))]1)]1))
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» A condensed trace

(merge (list 3 4)
(list 2 5 6))
= (cons 2 (merge (list 3 4)
(list 5 6))))

= (cons 2 (cons 3 (merge (list 4)

(list 5 6))))
= (cons 2 (cons 3 (cons 4 (merge empty

(list 56)))))

= (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 empty)))))

Sorting List abbrev Lists of lists Dictionaries 2D data Processing two lists List & number
00000000 000000 00000000000000 00000000000 000 00000000000000000000800000 0000000
58/69 08: More Lists CS 135

* Note that in the first question/answer pair, lon2 is empty, and the answer produced could be
replaced with lon2
e The first two question/answer pairs are then

[(and (empty? lonl) (empty? lon2)) lon2] -
[(and (empty? lonl) (cons? lon2)) lon2]

e Since both produce lon2 regardless of whether lon2 is empty or not, the two pairs can be replaced
with just
[(empty? lonl) lon2]
e The last question/answer pair can be replaced with else. We then have [else (cond ...)] which is

considered bad style. The question/answer pairs of the inner cond can be promoted to the outer
cond

e Together, these transformation result in the following:

(define (merge lonl lon2)
(cond [(empty? lonl) lon2] ; first two cases
[ (empty? lon2) lonl] ; third case
[(¢« (first lonl) (first lon2))
(cons (first lonl) (merge (rest lonl) lon2))]
[else (cons (first lon2) (merge lonl (rest lon2)))]))

Testing list equality
e Check whether two lists of numbers are equal (same elements, same order)
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Testing list equality

;5 (list=? lstl lst2) determines if 1stl and lst2 are equal
;3 list=?: (listof Num) (listof Num) — Bool
(define (list=? lstl lst2)
(cond
[(and (empty? lstl) (empty? 1st2)) ...]
[(and (empty? lstl) (cons? 1st2))

(ovs (first lst2) ... (rest lst2) ...)]
[(and (cons? lstl) (empty? 1st2))

Cose CELPSE IStl) o ((rest LSEL) ..u o))
[(and (cons? lstl) (cons? 1st2))
(?22)1))

e Two empty lists are equal (return true)
e If one list is empty and the other is not, they are not equal.
o If both of them are non-empty, then their first elements must equal

List equality code

(define (list=? 1stl lst2)
(cond

[(and (empty? lstl) (empty? 1st2)) true]
[(and (empty? 1stl) (cons? 1st2)) false]
[(and (cons? lstl) (empty? 1st2)) false]
[(and (cons? lstl) (cons? 1st2))

(and (= (first 1stl) (first lst2))

(list=? (rest lstl) (rest 1st2)))]))

Some further simplifications are possible.
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Exercise 7

Like merge, the code for list=? can be transformed in various ways. Each problem
stands alone, starting with the code on the previous slide. Like merge, whether the
result is “better” or not depends on the metrics used.

1 Combine the second and third question/answer pairs.

2 Combine the first and second question/answer pairs; simplify the third.
3 Use else.

4 Combine 1 and 3.

5 Combine 2 and 3.

6 Get rid of the cond completely.
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Processing a list and a
number

Monday, October 12, 2020 10:10

Example: Does an item appear at least n times in this list?
> Examples for at-1east?

7 (at-least? n elem lst) determines if elem appears

o at least n times in lst.

(check-expect (at-least? 0 'red (list 1 2 3)) true)

(check-expect (at-least? 3 "hi" empty) false)

(check-expect (at-least? 2 'red (list 'red 'blue 'red 'green)) true)
(check-expect (at-least? 3 'red (list 'red 'blue 'red 'green)) false)
(check-expect (at-least? 1 7 (list 54 0 5 3)) false)

;3 at-least?: Nat Any (listof Any) — Bool
(define (at-least-template? n elem lst)

Sorting List abbrev Lists of lists Dictionaries 2D data Processing two fists List & number
00000000 000000 0000000000000 00000000000 oco 000000000000000000000C0000 0@00000
64/69 08: More Lists CS 135

e The recursion involves the parameters n and Ist, giving four possibilities
(cond [(and (zero? n) (empty? 1lst)) ...]
[(and (zero? n) (cons? 1lst)) ...]
[(and (> n O0) (empty? lst)) ...]
[(and (> n O) (cons? lst)) ...]))

e If nis zero, the function should produce true no matter whether the list is empty
or not because every element always appears at least O times

* We now look at a more complicated recursion, namely writing functions which
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> Improved at-least?

(define (at-least? n elem lst)
(cond [(zero? n) true]
[(empty? lst) false]
; list is nonempty, n>1
[(equal? (first lst) elem) (at-least? (subl n) elem (rest lst))]
[else (at-least? n elem (rest lst))]))

The first two cases, in which n is 0, both produce true, so they could be
collapsed into a single case. [(zero? n) true]

We collapsed (and (> n 0) (empty? Ist)) to just (empty? Ist) because n is not
zero

The nested cond was promoted to the top level cond.

> Two condensed traces

(at-least? 3 'green (list 'red 'green 'blue)) =
(at-least? 3 'green (list 'green 'blue)) =

(at-least? 2 'green (list 'blue)) =
(at-least? 2 'green empty) = false

(at-least?
(at-least?
(at-least?

=

8 (list 4 8 15 16 23 42)) =
8 (list 8 15 16 23 42)) =
8 (list 15 16 23 42)) = true

(o )
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Efficiency

Sunday, October 18, 2020 16:36

Simple recursion
e Recall from Module 06: In simple recursion, every argument in a recursive
function application are either
o unchanged, or
o one step closer to a base case according to a data definition
e To identify simple recursion, look at the arguments to the recursive function
application - places where the function applies itself recursively:

(define (func 1lst) ... (func (rest 1lst)) ...) ;; Simple -
(define (func 1st x) ... (func (rest lst) x) ...) ;; Simple
(define (func 1lst x) ... (func (process lst) x} ...) ;; NOT
Simple

(define (func lst x)
.-- (func (rest 1st) (math-function x)) ...} ;; NOT Simple

The limits of simple recursion

;3 (max-list-v2 lon) produces the maximum element of lon
;; Examples:

(check-expect (max-list-v2 (list 6 2 37 1)) 7)

;3 max-list-v2: (listof Num) — Num
33 Requires: lon is nonempty
(define (max-list-v2 lon)
(cond [(empty? (rest lon)) (first lon)]
[(> (first lon) (max-list-v2 (rest lon))) (first lon)]
[else (max-list-v2 (rest lon))l]))

There may be two recursive applications of max-list.

The code for max-list-v2 is correct.

But computing (max-list-v2 (countup-to 1 25)) is very slow.

This is because the initial application is on a list of length 25, and there are two
recursive applications on the rest of this list, which is of length 24.

Each of those makes two recursive applications again.

Y
list-max | 25
list-max | 13 5 =23_3
24 24
. . 2-3"
23 23 23 23
1 1 1 '] 4" P Tl I N N

max-list can make up to 2" - 1 recursive applications on a list of length n.
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This is informally called exponential blowup.

Measuring efficiency

* We can take the number of recursive applications as a rough measure of a
function's efficiency

e max-list-v2 can take up to 2" - 1 recursive applications on a list of length n

e length takes n recursive applications on a list of length n

* length's efficiency is proportional to n
max-list-v2's efficiency is proportional to 2"

e We express the former as O(n) and the later as O(2")

e "Families" of algorithms with similar efficiencies, from most efficient to least:

“Big-0” | Example
O(1) no recursive calls; tax-payable
O(lgn) | divide in half, work on one half; binary-search on a balanced tree
O(n) one recursive application for each item; Length
O(nlgn) | divide in half, work on both halves; quicksort
O(n?) an O(n) application for each item; insertion-sort
o(2m) two recursive applications for each item; max-list
e |lgislog:

e Recognize when your function applies itself recursively twice and avoid that
e Note that the following code is not necessarily a problem:

(define (foo 1st ...) B
. (foo (rest 1st) ...) ;5 application 1
. (foo (rest lst) ...) ;; application 2

)

It's ok if one application of (foo..) applies foo at either application 1 or application 2
It's a problem if one application of foo does both of them.

Recap
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Fast O(n)

(define (max-list-v1l lon)
(cond [(empty? (rest lon)) (first lon)]
[else (max (first lon) (max-list-vl (rest lon)))1))

Slow O(2")

(define (max-list-v2 lon)
(cond [(empty? (rest lon)) (first lon)]
[(> (first lon) (max-list-v2 (rest lon))) (first lon)]

[else (max-list-v2 (rest lon))]))

e In many cases the slow version does the exact same computation twice
(max-list-v2 (rest lon)). This leads to exponential blowup.

e The fast version does the computation (max-list-vl (rest lon)) and passes that
result to a helper function. The helper function can make use of that value as often
as it needs to prevent calculating again, thus avoiding exponential blowup.
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Accumulative recursion

Monday, October 19, 2020 20:20

A human approach

e Humans do not seem to use either of the two versions of max-list shown eatrlier.

 Instead, we tend to find the maximum of a list of numbers by scanning it,
remembering the largest value seen so far.

e When we see a value that is larger than the largest seen so far, we remember the
new value until we see another that is still larger.

 When we get to the end of the list, the largest value seen so far is the largest value
in the list.

Accumulative recursion
e Computationally, we can pass down that largest value seen so far as a parameter
called an accumulator
e This parameter accumulates the result of prior computation, and is used to compute
the final answer that is produced in the base case.

;3 (max-list/acc lon max-so-far) produces the largest
= 3 of the maximum element of lon and max-so-far

;3 max-list/acc: (listof Num) Num — Num
(define (max-list/acc lon max-so-far)
(cond [(empty? lon) max-so-far]
[(> (first lon) max-so-far)
(max-list/acc (rest lon) (first lon))]

[else (max-list/acc (rest lon) max-so-far)l))

This is a wrapper.

. ; Wrappers are used

(define (max-list-v3 Llon) vwmgicwnmamm
(max-list/acc (rest lon) (first lon))) recursion due to the

extra parameters which

need to be initialized.

max-list/acc is not simple recursion.
In simple recursion, the arguments where max-list/acc is applied would be either
one step closer to the base case or unchanged

The first argument, (rest lon) is one step closer to the base case

The second argument is sometimes max-so-far and sometimes (first lon)

Tracing max-list/acc
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(max-list2 (list 1 2 3 9 5))

= (max-list/acc (list 2 3 9 5) 1)
= (max-list/acc (list 3 9 5) 2)
= (max-list/acc (list 9 5) 3)

= (max-list/acc (list 5) 9)

= (max-list/acc (list ) 9)

=9

e This technique is known as accumulative recursion

e |tis more difficult to develop and reason about such code, which is why simple
recursion is preferable if it is appropriate

e Simple recursion will continue to be the main tool

e Sometimes accumulative recursion will be easier or yield a more efficient or elegant
solution. In such cases, it is encouraged to use accumulative recursion

Indicators of the accumulative recursion pattern
e All arguments to recursive function applications are
o unchanged, or
o one step closer to a base case in the data definition, or
o a partial answer (passed in an accumulator)
An accumulative function requires at least one accumulator
There may be more than one accumulator
The value(s) in the accumulator(s) are used in one or more base cases
The accumulatively recursive function usually has a wrapper function that sets the
initial value of the accumulator(s)

Another accumulative example: reversing a list
e Using simple recursion

75 my-reverse: (listof X) — (listof X)
(define (my-reverse lst)
(cond
[ (empty? Llst) empty]
[else (append (my-reverse (rest lst))

(list (first lst)))]))

 Intuitively, append does too much work in repeatedly moving over the produced list
to add one element at the end
e This has the same worst-case behaviour as insertion sort, O(n?)

Reversing a list with an accumulator
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i3 (my-reverse lst) reverses lst using accumulative recursion
;; Example:
(check-expect (my-reverse (list 1 2 3)) (list 3 2 1))

;7 my-reverse: (listof X) — (listof X)
(define (my-reverse lst) ; wrapper function
(my-rev/acc lst empty))

(define (my-rev/acc lst acc) ; helper function
(cond [(empty? 1st) acc]
[else (my-rev/acc (rest lst)
(cons (first lst) acc))]))

e This is O(n)

e A condensed trace:
(my-reverse (list 1 2 3 4 5))
= (my-rev/acc (list 1 2 3 4 5) empty)
= (my-rev/acc (list 2 3 4 5) (cons 1 empty))
= (my-rev/acc (list 3 4 5) (cons 2 (list 1)))
= (my-rev/acc (list 4 5) (cons 3 (list 2 1)))
= (my-rev/acc (list 5) (cons 4 (list 3 2 1)))
= (my-rev/acc (list ) (cons 5 (list 4 3 2 1)))
= (list 543 2 1)
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Generative recursion

Monday, October 19, 2020 21:40

Generative recursion;: GCD

e The Euclidean algorithm for Greatest Common Divisor (GCD) can
be derived from the following identity for m > 0

ged(n,m) = ged(m, n mod m)

We also have ged(n,0) = n.
e euclid-gcd
;3 (euclid-gcd n m) computes gcd(n,m) using Euclidean algorithm

;; euclid-gcd: Nat Nat — Nat
(define (euclid-gcd n m)
(cond [(zero? m) n]
[else (euclid-gcd m (remainder n m))]))

e This function does not use simple or accumulative recursion.

Generative recursion
e The arguments in the recursive application were generated by doing a
computation on m and n
e The function euclid-gcd uses generative recursion
e Functions using generative recursion are easier to get wrong, harder to
debug and harder to reason about

Simple vs accumulative vs generative recursion
e In simple recursion, all arguments to the recursive function
application are either unchanged, or one step closer to a base case Iin
the data definition.
e |In accumulative recursion, parameters are as above, plus
parameters containing partial answers used In the base case

e |In generative recursion, parameters are freely calculated at each
step.
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Compound data

Friday, October 2, 2020 20:24

Short, fixed-length, lists
e Payroll with names and salaries

(list (list "Asha" 50000)
(Llist "Joseph" 100000)
(list "Sami" 10000))

e Other kinds of data that always go together include:
o Student (name, program, courses)
o Point (x, y)
o Book (author, title, number of pages)

Example: Student
 If we were to use a student list often, we might want to include:
o Some helper functions to extract the name, program, and courses
o A predicate to see if a given value represented a student
o Error messages if we gave it another kind of list
We cannot just check for a three-element list
What we can do is to embed an extra value in the list that is highly unlikely to be in any other list
If that value is present, then we will assume the list represents a student
Otherwise, we will assume it does not

> Example: Student (1/3)

;3 A Std (student) is a (make-std Str Str (listof Str))
The data definition allows us to use Std in contracts.

;3 A large "random" value to check for legit student values
(define STD-TAG "std_391249569284455218")

;3 (make-std name prog classes) makes a new student structure
i containing the name, program and classes for the student.

;3 make-std: Str Str (listof Str) — Std make-std makes a Std value.
(define (make-std name prog classes) It takes the three attributes of
(list STD-TAG name prog classes)) a student and bundles them

together with STD-TAG
;3 A sample student for testing
(define Juan (make-std "Juan" "CS" (list "CS 135" "MATH 137")))

Compound data Formalities Example Mixed data Structures vs. lists Quoting
00800000 000 00000000 0000000 00 00000
4/29 10: Structures CS 135
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> Example: Student (2/3)

;3 (std? v) returns true if v is a Std and false otherwise.

(check-expect (std? Juan) true)

(check-expect (std? (list "Juan" "CS" (list "CS 135" "MATH 137"))) false)
(check-expect (std? "Juan") false)

It can consume anything, so we need to make

. 2.
b AN ARy~ Beol sure it is a non-empty list (cons?)

(define (std? s)

(and (cons? s) A Std will have three pieces of data and the
(= (length s) 4) extra value (length 4)
(string=? (first s) STD-TAG)))
STD-TAG needs to be the first value.

> Example: Student (3/3)

;7 (std-name s) extracts the name field from student s; error
$ 3 if s is not a student
(check-expect (std-name Juan) "Juan") It's called an "selector function”
(check-error (std-name (list "Juan"))
"std-name: expects a std, given (list \"Juan\")")

std-name checks to ensure that it consumed a Std
;3 std-name: Std — Str value. If it didn't, it gives an error message. The built-in
(define (std-name s) function error is used for that. check-err(_)r is used to
(cond [(std? s) (second s)] testthatan errorwas produced appropriately.

[else (error "std-name: expects a std, given " s)]))

std-prog and std-classes are nearly identical to std-name.

Structures
e A Racket structure definition creates all of the above in only one line

(define-struct std (name prog classes))
i A Std (student) is a (make-std Str Str (listof Str))
e define-struct is a special form that automatically creates functions identical to the functions on the
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previous slides.

e The second line is the structure's data definition.
e Whenever you use define-struct, add a data definition to give the expected types.
e Given the data definition, Std may be used in contracts
e Functions automatically created:

o make-std

o std?

o std-name
std-prog

o std-classes
e The data definition for a structure always follows the form

O

;3 A <type-name> (<English-name>) is a (make-<sname> <type> ...)

<sname> is the first argument to define-struct
« If define-struct is given n field names, it will define n+2 functions. Each function will include
<sname> in its name.
o The first one is make-<sname>. It's called a constructor function and is used to construct
values
o The second is a predicate
o Then there is one selector for each of the n fields. Each is named <sname>-<fname> where
<fname> is the name of a field.
o The STD-TAG constant is added automatically behind the scenes by Racket. It is not our
concern when we use structures and we do not have access to it

> Example: add-class

(define-struct std (name prog classes))
;5 A Std (student) is a (make-std Str Str (listof Str))

;3 (add-class s class) adds a new class to the student s.
(check-expect (add-class (make-std "Jo" "CS" (list "MATH 137")) "CS 135")
(make-std "Jo" "CS" (list "CS 135" "MATH 137")))

;; add-class: Std Str — Std
(define (add-class s class)
(make-std (std-name s)
(std-prog s)
(cons class (std-classes s))))

(make-std n p c) is considered a value (as long as n, p, and c are values) and will

not be simplified. (make-std "Jo" "CS" (list "Math 137") is a value
Compound data Formalities Example Mixed data Structures vs. lists Quoting
8/29 10: Structures CS 135
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Formalities

Tuesday, October 20, 2020 17:26

Syntax and semantics

e The special form (define-struct sname (fname_1 ... fname_n) defines the structure type sname
with fields fname_1 to fname_n.

e |t also automatically defines the following primitive functions:
o Constructor: make-sname

o Selectors: sname-fname_1 ... sname-fname_n
o Predicate: sname?

e Sname (note the capitalization) may be used in contracts.

Substitution rules
e (make-snamev_1 ... v_n)is a value.
e The substitution rule for the ith selector is

(sname-fname_i (make-sname v_1 ... v_i ... v_n)) = v_i. )

e Finally, the substitution rules for the new predicate are:

(sname? (make-sname v_1 ... v_n)) = true
(sname? V) = false for V a value of any other type. J

Structure templates
e The template function for a structure simply selects all its fields, in the same order as listed in
the define-struct
e Example:

(define-struct std (name prog classes))
;3 A Std (student) 1s a (make-std Str Str (listof Str))

;; std-template: Std — Any
(define (std-template s)
( ... (std-name s)
(std-prog s)
(std-classes s) ... ))

e The above (structure definition, data definition, and template function) are only required once
per file
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Example: Classlists

Tuesday, October 20, 2020 17:38

Example: Classlists
¢ Define a class list that contains students enrolled in a course.
e Develop functions that
o Produce the names of the students in the class list

o Add a new student to the classlist, preserving alphabetical order

o Verify that all the students in a classlist have the class in their list of classes.

> Classlists (1/4)

(define-struct std (name prog classes))
;3 A Std (student) is a (make-std Str Str (listof Str))
Structure definition and data

;; std-template: Std — Any  (efinition for Std (student)

(define (std-template s)

These definitions are
only done once, no
matter how many
functions use them.

Compound data
00000000

13/29

( ... (std-name s) (std-prog s) (std-classes s)))

Data definition for Classlist can be
omitted by writing (listof Std) in

_ contracts, but it is easier and more
;3 Sample students for testing understandable

(define aj (make-std "AJ" "Math" (list "CS 135" "MATH 137")))
(define jo (make-std "Jo" "CS" (list "CS 135" "SPCOM 109")))
(define di (make-std "Di" "Math" (list "CS 135" "MATH 137")))

;3 A Classlist is a (listof Std)
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> Classlists (2/4)

(define aj (make-std "AJ" "Math" (list "CS 135" "MATH 137")))
(define jo (make-std "Jo" "CS" (list "CS 135" "SPCOM 109")))
(define di (make-std "Di" "Math" (list "CS 135" "MATH 137")))

;3 (class-names clst) produces a list of the student names in clst.
(check-expect (class-names (list aj jo di))
(list IIAJII IIJOII IIDilI))

;3 class-names: Classlist — (listof Str)
(define (class-names clst)

(cond [(empty? clst) empty]
[(cons? clst) (cons (std-name (first clst))
(class-names (rest clst)))]))

Compound data Formalities Example Mixed data Structures vs. lists Quoting
00000000 000 00800000 0000000 oo 00000
14/29 10: Structures CS 135

e class-names consumes a Classlist which is a (listof Std). So the template to start with is the
listof-X-template
;3 listof-X-template: (listof X) -» Any
(define (listof-X-template lox)
(cond [(empty? lox) ...]
[(cons? lox) (... (first lox) ...
{listof-X-template (rest lox)) ...)]))

e (first lox) is a student. So to write out the full classlist-template we would apply the std-template

;3 classlist-template: Classlist -> Any
(define (classlist-template clst)
(cond [(empty? clst) ...]
[(cons? clst) (... (std-template (first clst)) ...
(classlist-template (rest clst)) ...)])
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> Classlists (3/4)

(define aj (make-std "AJ" "Math" (list "CS 135" "MATH 137")))
(define jo (make-std "Jo" "CS" (list "CS 135" "SPCOM 109")))
(define di (make-std "Di" "Math" (list "CS 135" "MATH 137")))

;3 (add-std s clst) produces a new classlist composed of student s
5 all the students in clst. Maintain alphabetical order.

(check-expect :i{id;s‘;{i g? (};ﬁt aj jo)) No need to repeat the
b 2 B
st aj ] structure and data

;; add-std: Std Classlist — Classlist geioivons.

& reqires: the classlist is in alphabetical order
(define (add-std s clst)

(cond [(empty? clst) (list s)]
[(string<? (std-name s) (std-name (first clst))) (cons s clst)]
[else (cons (first clst) (add-std s (rest clst)))]))

> Classlists (4/4)

(define aj (make-std "AJ" "Math" (list "CS 135" "MATH 137")))
(define jo (make-std "Jo" "CS" (list "CS 135" "SPCOM 109")))
(define di (make-std "Di" "Math" (list "CS 135" "MATH 137")))

;3 (all-enrolled? class clst) produces true iff each student in clst has
i3 class in their list of classes

(check-expect (all-enrolled? "CS 135" (list aj jo di)) true)
(check-expect (all-enrolled? "MATH 137" (list aj jo di)) false)

;3 all-enrolled?: Str Classlist — Bool
(define (all-enrolled? class clst)
(cond [(empty? clst) true]
[else (and (member? class (std-classes (first clst)))
(all-enrolled? class (rest clst)))]))
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Mixed data

Tuesday, October 20, 2020 18:24

Mixed data
e Racket provides predicates such as number? and symbol? to identify data types
» define-struct also defines a predicate that tests whether its argument is that type of structure
e We can use these to check aspects of contracts and to write functions that consume mixed
data - data of several (probably related) types
e Example: A university has undergraduate students as well as graduate students. Graduate
students are like other students except they also have a supervisor

Data definitions

(define-struct ustd (name prog classes))
;3 A UStd (undergraduate student) is a (make-ustd Str Str (listof Str))

(define-struct gstd (name prog supervisor classes))
;3 A GStd (graduate student) is a (make-gstd Str Str Str (listof Str))

;3 A Student is one of: Types like Student and Classlist are for our
;; * a UStd benefit only. They help us understand the data
1 % a GStd that our functions consume and produce

i3 A Classlist is a (listof Student)

e There is no structure definition for mixed data

e There is a data definition that describes the data and gives a name that can be used in
contracts

Template function
e The template function for mixed data will determine the type of data and then include a
template for that type

;3 student-template: Student — Any
(define (student-template s)
(cond [(ustd? s) (... (ustd-name s)...
(ustd-prog s)
(ustd-classes s)...)]
[(gstd? s) (... (gstd-name s)...
(gstd-prog s)...
(gstd-supervisor s)...
(gstd-classes s)...)]))

e An alternative for student-template would define and then use ustd-template and gstd-template:
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(define (ustd-template s)

(... (ustd-name s)
(ustd-prog s)
(ustd-classes s) ...))

(define (gstd-template s)

(... (gstd-name s)
(gstd-prog s)
(gstd-supervisor s) ...
(ustd-classes s) ...))

;5 student-template: Student -»> Any
(define (student-template =)
(cond [(ustd? 5) (... (ustd-template s5) ...)]
[(gstd? 5) (... (gstd-template s) ...)}]))

> Example: Update program

;3 (update-prog std prog) updates the student's program ...

(check-expect (update-prog (make-ustd "Jo" "Math" empty) "CS")
(make-ustd "Jo" "CS" empty))

(check-expect (update-prog (make-gstd "Di" "CS" "Ian" empty) "Arts")
(make-gstd "Di" "Arts" "Ian" empty))

;5 update-prog: Student Str — Student
(define (update-prog std prog)
(cond [(ustd? std) (make-ustd (ustd-name std)
prog
(ustd-classes std))]
[(gstd? std) (make-gstd (gstd-name std)
prog
(gstd-supervisor std)
(gstd-classes std))]))

Compound data Formalities Example Mixed data Structures vs. lists
00000000 000 00000000 0008000 00
20/29 10: Structures

Module 10 Structures Page 90

Quoting
00000

CS 135



> Example: Filter by program

;3 (filter-prog prog cl) produces a classlist consisting of only
o the students in cl who are in the program prog.
;; filter-prog: Str Classlist — Classlist
(define (filter-prog prog cl)
(cond [(empty? cl) empty]
[(in-prog? prog (first cl))
(cons (first cl) (filter-prog prog (rest cl)))]
[else (filter-prog prog (rest cl))]))

;3 (in-prog? prog s) produces true iff student s is in program prog.
;3 in-prog? String Student — Bool
(define (in-prog? prog s)
(string=? prog (cond [(ustd? s) (ustd-prog s)]
[(gstd? s) (gstd-prog s)])))

Compound data Formalities Example Mixed data Structures vs. lists .

00000000 000 00000000 0000800 00 00000

21/29 10: Structures CS 135
anyof types

e Unlike UStd and GStd, the Student and Classlist types do not have a structure definition (i.e.
define-struct)

e For contracts like these to make sense, we need to have the data definitions for Student and
Classlist included as a comment in the program
;; update-prog: Student Str — Student

7 filter-prog: Str Classlist — Classlist
e An alternative to Student would be to use
;3 update-prog: (anyof UStd GStd) Str — (anyof UStd GStd)

Checked functions
e Constructor functions do not check that their arguments have the correct type
e We can use type predicates to make a type-safe version
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(define-struct ustd (name prog classes))
7 A UStd (undergraduate student) is a (make-ustd Str Str (listof Str))

(define (safe-make-ustd name prog classes)
(cond [(and (string? name) (> (string-length name) 0)
(string? prog) (> (string-length prog) 0)
(Llist? classes)) (make-ustd name prog classes)]
[else (error "Invalid argument types")]))

(check-error (safe-make-ustd "Jo" 123 empty) "Invalid argument types")

(check-error (safe-make-ustd "Jo" "CS" 'Sym) "Invalid argument types")
(check-expect (safe-make-ustd "J" "C" empty) (make-ustd "J" "C" empty))
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Structures vs Lists

Wednesday, October 21, 2020 9:28

Structures vs. Lists

e We do not have to use structures. We could construct a class list with simple lists

(define cs135/s (list
(make-ustd
(make-gstd
(make-ustd

(define cs135/1 (list

(list "AJ"
(list "Jo"
(list "Di"

Structures

"AJ" "CS" (list "CS 488" "CS 449"))
"Jo" "CS" "Ian" (list "CS 688" "CS 749"))
"Di" "Math" (list "CS 488" "PMATH 330"))))

"CS" (list "CS 488" "CS 449"))
"CS" "Ian" (list "CS 688" "CS 749"))
"Math" (list "CS 488" "PMATH 330"))))

* help avoid some programming error (e.g. extracting the wrong field)
e provide meaningful names that are easier to read and understand

e automatically generate functions

Lists

e make it possible to write "generic" functions that operate on several types of data
e can be expressed more compactly than structures
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Quoting

Wednesday, October 21, 2020 9:53

Quoting
e cons notation emphasizes a fundamental characteristic of a list - it has a first element and
the rest of the elements. Elements of the list can be computed as the list is constructed
e list notation makes our lists more compact but loses the remainder about the first element
and the rest, Like cons, element of the list can be computed as the list is constructed.
e Quote notation is even more compact but loses the ability to compute elements during
construction.

Examples:
@ 'l1=1, ""ABC" = "ABC", 'earth = 'earth

@ '(123)= (list 1 2 3)

@ '(abc)= (list 'a 'b 'c)

@ '(1 ("abc" earth) 2) = (list 1 (list "abc" 'earth) 2)
@ '(1 (+ 2 3))= (list 1 (list '+ 2 3))

@ '() = empty

¢ Quoting applies to more than lists

¢ Quoted numbers, strings and characters remain unchanged

e Quoting (...) turns the ... into a list

¢ Quoting a list of symbols "factors out" the quote to the front of the list

e Parentheses nested inside a quoted list are also turned into a list. They should not be quoted

e Because nested parentheses turn into sublists, we cannot easily include function
applications. Racket turns the function into a symbol
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Examples

Friday, October 23, 2020 12:34

> Example: binary expression trees

The expression ((2 #6) + (5 2))/(5 — 3) can be represented as a tree:

> Example: Phylogentic trees

Genomic epidemiclogy of novel coronavirus
v t

This phylogentic tree @ ity o bt D

tracks the evolution of ey B o
COVID-19 in the first b - :
four months of the e =

recent pandemic.

Image: nextstrain.org/ncov

Tree terminology

e Atreeis a set of nodes and edges where an edge connects two distinct nodes.
e A tree has three requirements
o One node is identified as the root.

o Every node c other than the root is connected by an edge to some other node p
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p is called the parent and c is called the child
o A tree is connected for every node n other than the root

root
odes

edges

e Other useful terms
o leaves: nodes with no children
internal nodes: nodes that have children
labels: data attached to a node
ancestors of node n: n itself, the parent of n, the parent of the parent, ... up to the root
descendants of n: all the nodes that have n as an ancestor
subtree rooted at n: n and all of its descendants

internal nodes

Iabelsv/v8

7y
14 &
©

o O O O O

leave

Characteristics of trees
e Number of children of internal nodes:
o exactly two
o at most two
o any number
e Labels:
o on all nodes
o juston leaves
e Order of children (matters or not)
e Tree structure (from data or for convenience)
e In some trees, each internal node will always have exactly two children while others may have an
unlimited number.
e Itis also useful to know whether the order of the children matters or not.
e Consider the binary expression tree
o Each internal node has exactly two children. That's implied by the "binary” in the name.
o It only deals with operators having a left and a right operand.
o The order of the children in a binary expression tree. If we changed the order of the children of
the division operator, we would get a different result when evaluating the expression
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e For a binary search tree (BST), the structure will be very important to enable fast searching, but the
structure will be decided by us rather than coming from the data.
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Binary Trees

Friday, October 23, 2020 13:38

Binary trees
e Abinary tree is a tree with at most two children for each node.
e Binary arithmetic expression trees and evolution trees are both examples of binary trees
e Characteristics:
o Each internal node has at most two children
o Our examples will have labels on all the nodes. It is however not a requirement of
binary trees

o Order of the children does not matter
o Structure is for convenience

Drawing binary trees

%

Note: We will consistently use Nats in our binary trees, but we could use symbols, strings,
structures, etc.

Binary tree data definition
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(define-struct node (key left right))

r

;; A Node is a (make-node Nat BT BT)

; A binary tree (BT) is one of:
*x empty
;% Node

The node's label is called "key" in anticipation of using binary trees to implement
dictionaries
The BT data definition is an example of mixed data

o One case is a particular kind of list, and empty list

o The other case is a structure
We could have used many other values instead of empty - any value that we can
distinguish from a Node, such as 0, false or ‘emptyTree

Aside: Tips for building templates

e For each part of the data definition
o Ifitis a defined data type, apply that type's template
o Ifit says "one of" or is mixed data, include a cond to distinguish the cases
o Ifitis compound data (a structure), extract each of the fields, in order
o Ifitis alist, extract the first and rest of the list
e Add ellipses around each of the above
e Apply the above recursively

> Example: sum-keys

;3 (sum-keys bt) sums the keys in the binary tree bt.
;» Examples
(check-expect (sum-keys empty) 0)
(check-expect (sum-keys (make-node 10 empty empty)) 10)
(check-expect (sum-keys (make-node 10
(make-node 5 empty empty)
empty)) 15)

;; sum-keys: BT — Nat
(define (sum-keys bt)

Examples  Binary Trees BSTs Augmenting. BinExpr General Trees Nested lists
00000 ©0000080000000000 000000000000  0OOO00CO00000000000000 00000000  HOOCACO000O0CO000000 0OOCO0O0000C0
12/91 11: Trees CS 135
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> Example: count-nodes

(define test-tree (make-node 5 (make-node 1 ...
(make-node 1 ...))))

;3 (count-nodes tree k) counts the number of nodes in the tree that

L have a key equal to k.

(check-expect (count-nodes empty 5) 0)

(check-expect (count-nodes test-tree 1) 3)

;3 count-nodes: BT Nat — Nat
(define (count-nodes tree k)
(cond [(empty? tree) 0]
[else (+ (cond [(= k (node-key tree)) 1]
[else 0])
(count-nodes (node-left tree) k)
(count-nodes (node-right tree) k))1))

Examples  Binary Trees BSTs Augmenting BinExpr General Trees Nested lists
00000 0000008000000000 000000000000 OO0O000000000000000000 OO000000 COC0O000000000000000 0O0OOO0C00000
13/91 11: Trees CS 135

> Example: Increment keys

;3 (increment tree) adds 1 to each key in the tree.
;3 increment: BT — BT
(define (increment tree)
(cond
[(empty? tree) empty]
[else (make-node (addl (node-key tree))
(increment (node-left tree))
(increment (node-right tree)))]1))

Examples  Binary Trees BSTs Augmenting BinExpr General Trees Nested lists
00000 ©000000800000000 COOCOO00O00C OO00000O000000C0000000 00000000 CO00O000000000000000 0O0OCOO000000
14/91 11: Trees CS 135

Searching binary trees

e Searching a binary tree for a given key - produce true if the key is in the tree and false
otherwise

e The strategy
o See if the root node contains the key we are looking for. If so, produce true.
o Otherwise, recursively search in the left subtree and in the right subtree.
o If either recursive search finds the key, produce true. Otherwise, produce false.
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;3 (search k tree) produces true if k is in tree; false otherwise.
13 search: Nat BT — Bool

(define (search-bt k tree)
(cond [(empty? tree) false]
[(= k (node-key tree)) true]
[else (or (search-bt k (node-left tree))
(search-bt k (node-right tree)))l]))

Find the path to a key

» Write a function, search-bt-path, that searches for an item in the tree. As before, it will
return false if the item is not found. However, if it is found, the function will return a list of
symbols ‘'left and ‘right indicating the path from the root to the item

« If the tree contains a duplicate, produce the path to the left-most item

The path from 6 to 9 is
"(right right left).
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> search-bt-path

;3 search-bt-path-vl: Nat BT — (anyof false (listof Sym))
(define (search-bt-path-vl k tree)

(cond

[(empty? tree) false]

[(= k (node-key tree)) '()]
[(list? (search-bt-path-vl k (node-left tree)))

(cons 'left (search-bt-path-vl k (node-left tree)))]
[(List? (search-bt-path-vl k (node-right tree)))

(cons 'right (search-bt-path-vl k (node-right tree)))]
[else false]))

‘() means empty

Double calls to search-bt-path. Uggh!

Examples
00000

19/91

Binary Trees BSTs Augmenting BinExpr General Trees Nested lists
0000000000000080 000000000000 OO0C00C000000000000000 00000000 COCO000000C0000000000 0000000000000
11: Trees CS 135

e Strategy for solving this problem

©)

O

O

A non-empty tree has three important parts: the root, the left subtree and the right
subtree

If the root contains k, the value we are searching for, produce empty and we are
done.

Otherwise, if only we could find a path to k in the left subtree, we could cons 'left
onto that path

If we cannot find k in the left subtree, we could look in the right subtree. If we find a
path there, all we need to do is cons the value 'right onto that path.

If k is not in the root, not in the left subtree and not in the right subtree, then it is not
in the tree at all. we produce false.

How to check if k is in the left subtree? Apply search-bt-path. If it produces a list, we
know k was found

However, after we have checked if k is in the left subtree, we still need to have the
path to k so that we can have (cons 'left path-to-k). We need to call search-bt-path
one more time

This strategy is correct, but leads to inefficient run-time

e The strategy above does not look that much like binary tree template:

;3 bt-template: BT --» Any
(define (bt-template t)
(cond [(empty? t) ...]

[(node? t) (... (node-key t)
(bt-template (node-left t))
(bt-template (node-right t)))]))

e The next version of search-bt-path actually looks more like the template while also
solving the efficiency issue
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> Improved search-bt-path

;3 search-bt-path-v2: Nat BT — (anyof false (listof Sym))
(define (search-bt-path-v2 k tree)
(cond

[(empty? tree) false]

[(= k (node-key tree)) '()] '() means empty
[else (choose-path-v2 (search-bt-path-v2 k (node-left tree))

(search-bt-path-v2 k (node-right tree)))]))

(define (choose-path-v2 left-path right-path)
(cond [(list? left-path) (cons 'left left-path)]

[(List? right-path) (cons 'right right-path)]
[else false]))

Examples  Binary Trees -~ BSTs Augmenting BinExpr General Trees Nested lists
00000 0000000000000008 000000000000 OO0000O0C000000000000000 0OO00000 0O0O00O0000000000000000 0000000000000
20/91 11: Trees

CS 135
e The insight is that once a value is passed to a parameter it can be used multiple times
without recalculating it

e So we search for k in both the left and right subtrees, passing the results to the helper
function. choose-path can use those values multiple times without hurting the efficiency
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Binary search trees

Tuesday, October 27, 2020 15:43

Data definition

;; A Binary Search Tree (BST) is one of:
;3 * empty

i3 % a Node

(define-struct node (key left right))
;5 A Node is a (make-node Nat BST BST)
;; Requires: key > every key in left BST
13 key < every key in right BST

The BST ordering property
» key is greater than every key in left
e key is less than every key in right
* The ordering property holds in every subtree

Example:
(make-node 5 S
(make-node 1 empty empty) 1
(make-node 7
(make-node 6 empty empty)
(make-node 14 empty empty))) 6
5
I
1 7
]
R
6 14
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There can be several BSTs holding a particular set of keys.

S 5

6 14 6

Searching in a BST (for n)
e |If the BST is empty, then n is not in the BST.

e If the BST is a node (make-node k left right), and k equals n, then we have found it.
e Otherwise it might be in either the left or right subtree

o If n <k, then n might be in the left subtree, and we only need to recursively
search in left

o If n >k, then n must be in the right subtree, and we only need to recursively
search in right.

e Either way, we save one recursive function application

search-bst

;; (search-bst n t) produces true if n is in t; false otherwise.
;3 search-bst: Nat BST — Bool
(define (search-bst n t)
(cond[ (empty? t) false]
[(= n (node-key t)) true]
[(< n (node-key t)) (search-bst n (node-left t))]
[(> n (node-key t)) (search-bst n (node-right t))1))

The last clause, (> n (node-key 1)),
could be replaced with else

Examples  Binary Trees BSTs Augmenting BinExpr General Trees Nested lists
00000 0000000000000000 O00000e00000 OOOODOO000000CCOC0000 00000000 OODOOOOODOVVONK ©0000000K
27/91 11: Trees CS 135

Adding to a BST
e If tis empty, then the result is a BST with only one node containing n
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o Iftis of the form (make-node k left right) and n = k, then the key is already in the tree
and we can simply produce t
e Otherwise, n must go in either the left or right subtree
o If n <k, then the new key must be added to left
o If n >k, then the new key must be added to right
e Again, we only need to make one recursive function application
e The contract is bst-add: Nat BST --> BST
e When we consume a node that does not match the key, we need to produce a new
node containing the old key, the transformed subtree, and the untransformed other
subtree.

Creating a BST from a list
e If the list is empty, the BST is empty
 |s the list is of the form (cons k Ist), we add the key k to the BST created from the Ist.
The first key in the list is inserted last.
e |tis also possible to write a function that inserts key in the opposite orde
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Augmenting trees

Tuesday, October 27, 2020 16:39

Augmenting trees
e So far nodes have been (define-struct node (key left right))
e We can augment the node with additional data (define-struct node (key val left right))
o The name val is arbitrary - choose any name
The type of val is also arbitrary - number, string, structure, etc
Could augment with multiple values
The set of keys remains unique
The tree could have duplicate values

O

o O O

BST dictionaries
e An augmented BST can serve as a dictionary that can perform significantly better than an
association list, which is a list of two-element lists

» We need to modify node to include the value associated with the key and search needs to return the
associated value, if the key is found.

> search-bst-dict

(define-struct node (key val left right))

;; A binary search tree dictionary (BSTD) is either:
7 * empty

;3 * (make-node Nat Str BSTD BSTD)

;i (search-bst-dict k t) produces the value associated with k

B if k is in t; false otherwise.

;3 search-bst-dict: Nat BSTD — (anyof Str false)

(define (search-bst-dict k t)

(cond[ (empty? t) false]

[(= k (node-key t)) (node-val t)]
[(< k (node-key t)) (search-bst-dict k (node-left t))]
[(> k (node-key t)) (search-bst-dict k (node-right t))1))

Examples  Binary Trees _ BSTs Augmenting  BinExpr  GeneralTrees Nestedlists
00000 0000000000000000  GO00QV00000  00E0000000000000000000  COO0R000  CONOCO0O0COO00000000  0OOOCO0ON0000
133/91 11: Trees CS 135
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> search-bst-dict tests

(define test-tree (make-node 5 "Susan"
(make-node 1 "Juan" empty empty)
(make-node 14 "David"
(make-node 6 "Lucy" empty empty)
empty)))

(check-expect (search-bst-dict 5 empty) false)
(check-expect (search-bst-dict 5 test-tree) "Susan")
(check-expect (search-bst-dict 6 test-tree) "Lucy")
(check-expect (search-bst-dict 2 test-tree) false)

Examples  Binary Trees BSTs Augmenting BinExpr  General Trees Nested lists.
34/91 11: Trees CS 135

Evolutionary trees
e Evolutionary trees are augmented binary trees that show the evolutionary relationships between
species. Biologists believe that all life on Earth is part of a single evolutionary tree, indicating
common ancestry
» Leaves represent a current species. They are augmented with a name and whether the species is
endangered
 Internal nodes represent a hypothesized common ancestor species that split into two new
species. Internal nodes are augmented with a name and an estimate of how long ago the split took
place (in millions of years)
» Evolutionary trees are constructed by evolutionary biologists
o Start with current species
o Based on common attributes (including DNA sequences), hypothesize common ancestor
species
o Keep going with more and more common ancestor species
o Back to a single common ancestor (the root)
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S

Current Species

Representing evolutionary trees

 Internal nodes each have exactly two children
Each internal node has

o the name of the common ancestor species

o how long ago the common ancestor split into two new species

o the two species that resulted from the split

Leaves have
o the name of the current species

o the endangerment status (true if endangered; false otherwise)

The order of children does not matter

Data definitions

;3 An EvoTree (Evolutionary Tree) is one of:

;3 * a Current (current species)

;3 * an Ancestor (common ancestor species)

(define-struct current (name endangered))
;3 A Current is a (make-current Str Bool)

The structure of the tree is dictated by a hypothesis about evolution

(define-struct ancestor (name age left right))

.
r

; An Ancestor is a (make-ancestor Str Num EvoTree EvoTree)

Note that the Ancestor data definition uses a pair of EvoTrees

Binary Tree

Evolutionary Tree

Data definition A Node is a (make-node Nat BT BT).

A binary tree (BT) is one of:
e empty
*Node
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A Current is a (make-current Str Bool).
An Ancestor is a
(make-ancestor Str Num EvoTree EvoTree).
An (EvoTree) is one of:
e A Current
¢ An Ancestor




Non-recursive empty Current structure

case:

Recursive case |Node structure Ancestor structure

Sample leaf node | (make-node 5 empty empty) (make-current "human" false)

Smallest possible | empty A single Current species

tree

Subtree order Sometimes matters Does not matter

Number of Nodes may have 0, 1 or 2 children Every internal node has exactly two children

children

Types of children | The left and right fields for a BT are | The left and right fields for an Ancestor are

BTs not Ancestor nodes. They are EvoTrees. They

might be Current nodes or they might be
Ancestor nodes.

» Constructing the example evolutionary tree (1/2)

(define-struct current (name endangered))

;3 A Current is a (make-current Str Bool)

(define-struct ancestor (name age left right))

;3 An Ancestor is a (make-ancestor Str Num EvoTree EvoTree)

(define human (make-current "human" false))

(define chimp (make-current "chimp" true))

(define rat (make-current "rat" false))

(define crane (make-current "crane" true))

(define chicken (make-current “chicken" false))
(define worm (make-current "worm" false))

(define fruit-fly (make-current "fruit fly" false))
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» Constructing the example evolutionary tree (2/2)

(define e-primates (make-ancestor "early primates" 5 human chimp))
(define e-mammals (make-ancestor "early mammals" 65 e-primates rat))
(define e-birds (make-ancestor "early birds" 100 crane chicken))
(define e-vertebrates

(make-ancestor "early vertibrates" 320 e-mammals e-birds))
(define e-invertebrates

(make-ancestor "early invertibrates" 530 worm fruit-fly))
(define mco

(make-ancestor "multi-celled organisms"

535 e-vertebrates e-invertebrates))

> EvoTree Template i1/3)

;3 An EvoTree (Evolutionary Tree) is one of:
;3 * a Current (current species)
;3 * an Ancestor (common ancestor species)

(define-struct current (name endangered))

;+ A Current is a (make-current Str Bool)

(define-struct ancestor (name age left right))

;3 An Ancestor is a (make-ancestor Str Num EvoTree EvoTree)

;3 evotree-template: EvoTree — Any
(define (evotree-template t)
(cond [(current? t) (current-template t)]
[(ancestor? t) (ancestor-template t)]))
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» EvoTree Template (2/3)

This is a straightforward

;3 current-template: Current — Any implementation based on the
(define (current-template cs) _—
data definition.
(... (current-name cs) ..
(current-endangered cs) ...))

It's also a good strategy to

;; ancestor-template: Ancestor — Any take a complicated problem

(define (ancestor-template as) (dealing with an EvoTree) and
(... (ancestor-name as) ... decompose it into simpler
(ancestor-age as) ... problems (dealing with a
(ancestor-lgft as) ... Current Or an Ancestor).
(ancestor-right as) ...))
Examples  Binary Trees BSTs Augmenting _______ BinExpr  GeneralTrees . Nestedlists
44/91 11: Trees CS 135

» We know that (ancestor-left as) and (ancestor-right as) are EvoTrees, so we apply the EvoTree
function to them.

;3 ancestor-template: Ancestor — Any
(define (ancestor-template as)
(... (ancestor-name as) ...
(ancestor-age as)
(evotree-template (ancestor-left as)) ...
(evotree-template (ancestor-right as)) ...))

» ancestor-template uses evotree-template and evotree-template uses ancestor-template

» This is called mutual recursion. It is when a pair of functions call each other

» The base case in this example is [(current? t) (current-template t)] in evotree-template because
current-template has no recursive applications

EvoTree Example 1
e Counts the number of current species within an evotree
» Strategy for solving this problem
o Iftis a current species, we have exactly one current species and no subtrees, so just return 1.
o Iftis a common ancestor, then count the number of current species in each of its two subtrees
and add these numbers together
;; (count-current-species t): Counts the number of current species
3 (leaves) in the EvoTree t.
(check-expect (count-current-species mco) 7)
(check-expect (count-current-species human) 1)

;3 count-current-species: EvoTree — Nat
(define (count-current-species t)
(cond [(current? t) (count-current t)]
[(ancestor? t) (count-ancestor t)]))
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;3 count-current Current — Nat
(define (count-current t)
1)

;+ count-ancestor Ancestor — Nat
(define (count-ancestor t)
(+ (count-current-species (ancestor-left t))
(count-current-species (ancestor-right t))))

« In this case mutual recursion can be avoided by folding the two helper functions into count-current-

species
{define (count-current-species t)
(cond
[{current? t) 1]
[{ancestor? t) (+ (count-current-species (ancestor-left t))
{count-current-species (ancestor-right t)))]))

Traversing a tree

A tree traversal refers to the process of visiting each node in a tree exactly once
Visiting a node just means doing something with it. It might be checking to see if it has the value we
are looking for, collecting some information from it, or transforming it in some way
They key idea is that each node is visited at least once
They are often classified by the order in which the nodes are visited
o pre-order: visit the root, then each subtree
o in-order: visit one subtree, the root, then the other subtree
o post-order: visit both subtrees, then the root
The order often affects the function's result
The increment example from binary trees is one example of a pre-order traversal

List-names
» list-names

;; list-names: EvoTree — (listof Str) The contracts give
(define (list-names t) important information
(cond [(current? t) (list-cnames t)] that can guide the
[(ancestor? t) (list-anames t)])) development

' (list of Str)
;3 list-cnames: Current — ____ What are they?

(define (list-cnames cs)

In list-cnames, the name is a single
(... (current-name cs) ...))

string. Just producing a string violates the

_ (listof Str) contract. We change the body to (list
;3 list-anames: Ancestor — (current-name cs))

(define (list-anames as)

(... (ancestor-name as) ... In list-anames, there are recursive calls.
(list-names (ancestor-left as)) ... We combine several lists into one list with
(list-names (ancestor-right as)) ...)) @ppend. For the ancestor's name, we do

(list (ancestor-name as))
Examples  Binary Trees BSTs Augmenting BinExpr General Trees Nested lists
00000 0000000000000000 elele 0 00 0000000000 0 00000C 000¢ Y0000000000 000 :
49/91 11: Trees CS 135
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» list-names with an accumulator (1/2)

;3 list-names: EvoTree — (listof Str) i . ¢ .
(define (list-names t) Ist-name IS a wrapper unction

(list-names/acc t '())) The accumulator is set to empty initially

;3 list-names/acc: EvoTree (listof Str) — (listof Str)
(define (list-names/acc t names) _
(cond [(current? t) (list-cnames t names)] list-name/acc uses a parameter,

[(ancestor? t) (list-anames t names)]))names. which is the list of names
seen so far in the traversal of the tree

We split the problem into two subproblems:
listing the names if the tree is a current
species and listing the names if it is an
ancestor species

» list-names with an accumulator (2/2)

;3 list-cnames: Current (listof Str) — (listof Str) )
(define (list-cnames cs names) list-cnames consumes the list of names seen so far
. ey and cons the_name o_f the_current species, thus
producing a list of strings indicated by the contract

;3 list-ee-names: EvoEvent (listof Str) — (listof Str)

(define (list-anames as names) list-anames applies list-names/acc to
(cons (ancestor-name as) each of the subtrees. It also needs to
(List-names/ace (ancestor-left as) supply the names of the nodes visited

(list-names/acc (ancestor-right a%gf%ggé§f§§50fthesezapphcaﬂons

7+ Tests
(check-expect (list-names human) '("human"))
(check-expect (list-names e-mammals)
'("early mammals" "early primates" "human" "chimp" "rat"))

33 WRONG

(append (list (ancestor-name as))
(list-names/acc (ancestor-left as) names)
(list-names/acc (ancestor-right as) names))

¢ The problem with this is that when list-names/acc is applied the second time the names argument is
wrong

¢ Nodes that have now been visited (the first application) are not included in names
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Binary arithmetic expression trees

Wednesday, October 28, 2020 22:22

Binary expression trees
e The expression ((2*6)+(5*2))/(5/3) can be represented as a binary expression tree
e A binary expression tree structures arithmetic expressions into a tree which makes it
easy to calculate the value of the expression

©
2 6 5 2

Representing binary arithmetic expressions

¢ Internal nodes each have exactly two children
Leaves have number labels
Internal nodes have symbol labels
Order of children matters
The structure of the tree is dictated by the expression
Data definition:

;3 A binary arithmetic expression (BinExp) is one of:
v * a Num
;3 * a BINode

(define-struct binode (op left right))

;3 A Binary arithmetic expression Internal Node (BINode)

&3 is a (make-binode (anyof 'x '+ '/ '-) BinExp BinExp)
e Some examples of binary arithmetic expressions

5 the smallest possible binary arithmetic expression tree is a single number

(make-binode '* 2 8) ihe next smallest possible tree is two numbers and an operator
(make-binode '+ 2 (make-binode '- 5 3))

o Leaf nodes will always be numbers
o Internal nodes will always have an operator with left and right subtrees that are
binary arithmetic expressions
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» A more complex example

(make-binode '/
(make-binode '+ (make-binode '* 2 6)
(make-binode 'x 5 2))

(make-binode '- 5 3))

This tree represents the expression
2*6+5*2)/(5-3)

To evaluate this expression,
calculate the value of the left
subtree, calculate the value of the
right subtree, and then divide

> Templates for binary arithmetic expressions

;3 binexp-template: BinExp — Any
(define (binexp-template ex)
(cond [(number? ex) (... ex ...)]

[(binode? ex) (binode-template

;; binode-template: BINode — Any
(define (binode-template node)

£ s

(binode-op node) ...

binexp-template is mutually recursive
because binexp-template calls
binode-template and binode-template
calls binexp-template

ex)]))
The base case is when the binary
expression is just a number

The binode-template could have been

(binexp-template (binode-left node)) .. absorbed into the binexp-template,
(binexp-template (binode-right node)) . tuhhing the mutual recursion into
ordinary recursion
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> Evaluating expressions (1/2)

;3 (eval ex) evaluates the expression ex and produces its value.

(check-expect (eval 5) 5)

(check-expect (eval (make-binode '+ 2 5)) 7)

(check-expect (eval (make-binode '/ (make-binode '- 10 2)
(make-binode '+ 2 2))) 2)

;3 eval: BinExp — Num
(define (eval ex)
(cond [(number? ex) ex]
[(binode? ex) (eval-binode ex)]))
If the binary expression is just a number, the value is that same number.
Otherwise, it is an internal node with subtrees, so we apply eval-binode, a
function based on the binode-template

> Evaluating expressions (2/2)

;3 (eval-binode node) evaluates the expression represented by node.
;; eval-binode BINode — Num
(define (eval-binode node)
(cond [(symbol=? 'x (binode-op node))
(* (eval (binode-left node)) (eval (binode-right node)))]
[(symbol=? '/ (binode-op node))
(/ (eval (binode-left node)) (eval (binode-right node)))]
[(symbol=? '+ (binode-op node))
(+ (eval (binode-left node)) (eval (binode-right node)))]
[(symbol=? '- (binode-op node))
(- (eval (binode-left node)) (eval (binode-right node)))]))
For each of the four arithmetic operators, we check which one it is,

calculate the values of the left and right subtrees (using eval) and then do
the right thing for that operator using the built-in function
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» Eval, refactored

(define (eval ex)
(cond [(number? ex) ex]
[(binode? ex) (eval-binode (binode-op ex)
(eval (binode-left ex))
(eval (binode-right ex)))1))

(define (eval-binode op left-val right-val) eval-binode now takes three parameters
(cond [(symbol=? op 'x) (* left-val right-val)]
[(symbol=? op '/) (/ left-val right-val)]
[(symbol=? op '+) (+ left-val right-val)]
[(symbol=? op '-) (- left-val right-val)]))
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General trees

Thursday, October 29, 2020 15:04

General trees
e Binary trees can be used for a large variety of application areas

e One limitation is the restriction on the number of children
e Trees with an arbitrary number of children (subtrees) in each node are called general trees

General arithmetic expressions
» Racket expressions using the functions + and * can have an unbounded number of

arguments. For example,
(+ (x 4 2)

3

(+51 2)

2)

4 2 5 1 2

Representing general arithmetic expression trees
e For a binary arithmetic expression, we defined a structure with three fields: the operator, the
first argument and the second argument
e For a general arithmetic expression, we define a structure with two fields: the operator and

a list of arguments (a list of arithmetic expressions)
;3 An Arithmetic Expression (AExp) is one of:

7+ % Num
;+ * OpNode

(define-struct opnode (op args))
;; An OpNode (operator node) is a

;+ (make-opnode (anyof 'x '+) (listof AExp)).

Developing eval
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> Developing eval

;; (eval exp) evaluates the arithmetic expression exp.

;; Examples:

(check-expect (eval 5) 5)

(check-expect (eval (make-opnode '+ (list 1 2 3 4))) 10)

(check-expect (eval (make-opnode 'x (list 2 3 4))) 24)

(check-expect (eval (make-opnode '+ (list 1
(make-opnode 'x (list 2 3))
3))) 10)

;3 eval: AExp — Num
(define (eval exp)

-

> C-ompl'ete eval and apply (1 /3)

;3 (eval exp) evaluates the arithmetic expression exp.

;+ Examples:

(check-expect (eval 5) 5)

(check-expect (eval (make-opnode '+ (list 1 2 3 4))) 10)

(check-expect (eval (make-opnode '+ (list 2 3 4))) 24)

(check-expect (eval (make-opnode '+ (list 1
(make-opnode 'x (list 2 3))
3))) 10)

;3 eval: AExp — Num
(define (eval exp)
(cond [(number? exp) exp]
[ (opnode? exp) (apply (opnode-op exp)
(opnode-args exp))]))
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> Completed evat and appty (2/3)

;; (apply op args) applies the arithmetic operator op to args.
;+ Examples:

(check-expect (apply '+ (list 1 2 3 4)) 10)

(check-expect (apply '+ (list 2 3 4)) 24)

(check-expect (apply '+ (list 1 (make-opnode '*x (list 2 3)))) 7)
(check-expect (apply '+ (list )) 0)

(check-expect (apply '* (list )) 1)

> Completed eval and apply (3/3)

1 ;; apply: (anyof '+ 'x) (listof AExp) — Num

2 (define (apply op args) L .
3 (cond [(empty? args) (cond [(symbol=? op '+) 0] adchpvgldgntﬂy _
4 [(symbol=? op '*) 1])] multiplicative identity
5 [(symbol=? op '+) (+ (eval (first args))

6 (apply op (rest args)))l]

7 [(symbol=? op 'x) (* (eval (first args))

8 (apply op (rest args)))l1))

Alternate data definition
¢ We can replace the structure opnode and the data definitions for AExp with a list:
¢ Data definition

;3 An alternate arithmetic expression (ALtAExp) is one of:
;3 * a Num
;5 * (cons (anyof 'x '+) (listof ALltAExp))
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o Each expression is a list consisting of a symbol (the operator) and a list of expressions

Structuring data using mutual recursion
e Mutual recursion arises when complex relationships among data result in cross references
between data definitions
e The number of data definitions can be greater than two
e Structures and lists may also be used
e In each case
o create templates from the data definitions, and
o create one function for each template
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Nested Lists

Friday, October 30, 2020 18:13

Nested lists
e We have flat lists (no nesting)

(a1 "hello" x)
* We also have lists of lists (one level of nesting)
"((1 "a") (2 "b") (3 "c"))
e We now consider nested lists (arbitrary nesting)
"((1 (2 3))
4
(5 (678)9()))

e Itis helpful to visualize these nested lists as trees

Visualizing nested lists

 Itis often helpful to visualize a nested list as a tree, in which the leaves correspond
to the elements of the list, and the internal nodes indicate the nesting

() ©
(1) 1

‘(12 3) 1 2 3

2 3 6 7 8
"((1 (23)) 4 (5(678)9()))

'((12)3(40)) 12 4

e This is an example of a leaf-labelled tree
o Labels only appear on the leaves
o Internal nodes are not labelled
e '(...) can be viewed as a "node" with the contents of the list as the children

e But unlike the nodes we have seen previously, these "nodes" can appear as a leaf
when they are empty

Data definition for nested lists
e Sample nested lists
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()
((12) 3(40()))
(12 3)
‘(1 (2 3) 4)
e Observations:

o A nested list might be empty

o The first item of a non-empty nested list is either
» anested list
= asingle item (a number, not a list)

o The rest of a non-empty nested list is a nested list

;; A nested list of numbers (Nest-List-Num) is one of:
;3 *x empty

;3 * (cons Nest-List-Num Nest-List-Num)

;3 * (cons Num Nest-List-Num)

* This can be generalized to generic types: (nested-listof X)

33 A nested list of X (nested-listof X) is one of:
;3 ¢ oempty

33 * (cons (nested-listof X) (nested-listof X))
33 * (cons X (nested-listof X))

> Template for nested lists

The template follows from the data definition.

;; nest-lst-template: (nested-listof X) — Any
(define (nest-lst-template lst)
(cond [(empty? 1st) ...]
[(List? (first 1st)) (... (nest-lst-template (first lst)) ...
(nest-1st-template (rest lst)) ...)]
[else (i ¢ (Tirst Lst)
(nest-lst-template (rest 1lst)) ...)1))

The data definition has three clauses, which show up as the three question/answer
pairs in the template

As with previous templates, when we see a specific data type (nested-listof X) in the
data being consumed, we apply the appropriate template to it (nest-Ist template)

Examples B"WV“W - BSTS Mamenﬁ"o_. I e o s R e it
00000 00000 000000 : ‘ 00000000 00080000000
83/91 11: Trees CS 135
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> The function count-items

;3 (count-items nl) counts the number of items in nl.
;; Examples:

(check-expect (count-items '()) 0)

(check-expect (count-items '((10 20) 30)) 3)
(check-expect (count-items '((10 20) () "thirty")) 3)

;3 count-items: (nested-listof X) — Nat
(define (count-items 1st)
(cond [(empty? lst) 0]
[(list? (first lst)) (+ (count-items (first lst))
(count-items (rest 1st)))]
[else (+ 1
(count-items (rest 1st)))1))

» Condensed trace of count-items

(count-items '((10 20) 30))

= (+ (count-items '(10 20)) (count-items '(30)))

= (+ (+ 1 (count-items '(20))) (count-items '(30)))

= (+ (+ 1 (+ 1 (count-items '()))) (count-items '(30)))
= (+ (+1 (+10)) (count-items '(30)))

= (+ (+ 1 1) (count-items '(30)))

= (+ 2 (count-items '(30)))

= (+ 2 (+ 1 (count-items '())))

= (+2((+10))=(+21)=3
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> Flattening a nested list

flatten produces a flat list from a nested list.

;3 (flatten 1st) produces a flat list with all the elements of lst.
;; Examples:

(check-expect (flatten '(1 2 3)) '(1 2 3))

(check-expect (flatten '((1 2 3) (ab<c))) '(123abc))
(check-expect (flatten '((1 2 3) () (a (b<c)))) '(1 23 abc))

Note that flatten produces all of the
items in the consumed nested list in
the same order.

We rarely used append so far in the
We make use of the built-in Racket function appendcourse. Consider using append

* when the first list may have a

(append (1 2) '(3 4))="'(1234) length greater than one, or

» when there are more than two lists

;3 flatten: (nested-listof X) — (listof X)
(define (flatten 1st)

> Flattening a nested list

;; (flatten 1st) produces a flat list with all the elements of 1lst.
;;» Examples:

(check-expect (flatten '(1 2 3)) '(1 2 3))

(check-expect (flatten '((1 2 3) (abc))) '(123abc))
(check-expect (flatten '((1 2 3) () (a(b<c)))) '(123 abc))

;3 flatten: (nested-listof X) — (listof X)
(define (flatten 1st)
(cond [(empty? lst) empty]
[(list? (first lst)) (append (flatten (first lst))
(flatten (rest 1st)))]
[else (cons (first 1lst)

append is used when
there are two lists

cons is used to add a

(flatten (rest 1st)))1)) sjngle item to the
front of a list
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» Condensed trace of flatten

(flatten '((10 20) 30))

= (append (flatten '(10 20)) (flatten '(30)))

= (append (cons 10 (flatten '(20))) (flatten '(30)))

= (append (cons 10 (cons 20 (flatten '()))) (flatten '(30)))
= (append (cons 10 (cons 20 empty)) (flatten '(30)))

= (append (cons 10 (cons 20 empty)) (cons 30 (flatten '())))
= (append (cons 10 (cons 20 empty)) (cons 30 empty))

= (cons 10 (cons 20 (cons 30 empty)))

If the first is a single item, cons it on the result of applying flatten to the rest of the list

If the first is a nested list, flatten it and append it with the result of applying flatten tp
the rest of list
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Motivation

Wednesday, November 4, 2020 0:03

Local definitions

e The functions and special forms we have seen so far can be arbitrarily nested, except define
and check-expect

e So far, definitions have to be made "at the top level", outside any expression

e The intermediate language provides the special form local, which contains a series of local
definitions plus an expression using them

(Local [(define x_1 exp_1) ... (define x_n exp_n)] bodyexp)

Motivating local definitions
e Consider Heron's formula for the area of a triangle with sides a, b, c:

V/s(s—a)(s—b)(s—c),wheres=(a+b+c)/2

» We will describe several possibilities, starting with a direct implementation

Motivation: direct translation
> Motivation: direct translation

(define (t-area-v@ a b c)
(sqrt
(*x (/ (+abc) 2)
(- (/ (+abc) 2) a)
(- (/ (+abc)2)b)
(- (/ (+abc)2)c))))

The repeated computation of s = (a+ b+ ¢)/2 is awkward.

Motivation Semantics Reasons Terminology
0080000 Q000000 000000000000CA0000000000000 0000
4/41 12: Local Definitions CS 135

e Professional programmers try to follow the "DRY Principle" - "Don't Repeat Yourself"
e Repeating yourself

Allows bugs to be fixed at some places but not others

Is often less efficient for the computer

Involves more typing

Means the code must be understood again each time it occurs

O

o O O

Module 12 Local Definitions Page 128



> Motivation: rewrite expressions

We could notice that s — a= (—a+ b+ ¢)/2, and make similar substitutions.

(define (t-area-vl a b c)

(sqrt
(* (/ (+ abc) 2)
(/ (+ (- a) bc) 2)
(/ (+a (- b) c) 2)
(/ (+ab (-c)) 2))))

This is slightly shorter, but its relationship to Heron'’s formula is unclear from just
reading the code, and the technique does not generalize.

Motivation Semantics Reasons Terminology
0008000 0000000 000000000000000C00000000000 0000
5/41 12: Local Definitions CS 135

> Motivation: use a helper function (v1)

We could instead use a helper function.

This generalizes well to formulas that

(define (t-area-v2 a b c) define several intermediate quantities.

(sqrt
(* (s ab c)

But the helper functions need
(- (s abc) a)

(- (% & B &) B) parameters, which again makes the
(- (sabc)c))) relationship to Heron’s formula hard to
see. And there’s still repeated code
(define (s a b c) and repeated computations.

(/ (+a b c) 2))

Motivation Semantics Reasans Terminology
0000800 0000000 000000000000C00000000000000 0000
6/41 12: Local Definitions CS 135

e The helper function calculates the value of s in the original formula
e However, it is called four times and also has a terrible name
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> Motivation: use a helper function (v2)

We could instead move the computation using s into a helper function, and provide
the value of s as a parameter.

(define (t-area-v3 a b c)

t-area-v3 is actually a wrapper function
(t-area/s abc (/ (+ abc) 2)))

(define (t-area/s a b c s)
(sqrt (* s (- s a) (- sb) (-sc))))

This is more readable, and shorter, but it is still awkward because the value of s is
defined in one function and used in another.

Motivation Semantics Reasons Terminology
0000080 0000000 ©0000000000000000C00000000000 0000
7/41 12: Local Definitions

CS 135
e This version also solves the DRY problem. The code to compute s is not repeated. It does not
have to be typed multiple times and does not have to be executed multiple times

Motivation: use local

e The local special form we introduced provides a natural way to bring the definition and use
together
(define (t-area-v4 a b c)
(local [(define s (/ (+ a b c) 2))]
(sqrt (* s (- s a) (- sb) (- s <c)))))

» Since local is another special form (like cond) that results in double parentheses, we will use
square brackets to improve readability. This is another convention
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Semantics

Wednesday, November 4, 2020 19:22

Semantics of local
¢ Local definitions permits reuse of names
e This is not new to us

(define n 10)
(define (myfn n) (+ 2 n))

(myfn 6)  This outputs 8, not 12
e The following produces (+ 4 3), not (+ 4 5)

{define x 5)
{define (fun a)
(local [(define x 3)]

(+ ax)))

{fun 4)

Reusing names
e (define n v) binds a value v to a name n
e The name of a formal parameter to a function may reuse a hame such as n within the body
of that function
e Similarly, a define within a local expression may reuse a name which has already been
bound to another value or expression

Informal subsitution rule for local

e The substitution rule works by replacing every name defined in the local with a fresh name
(fresh identifier), a new, unique name that has not been used anywhere else in the program

e Each old name within the local is replaced by the corresponding new name

e Because the new name has not been used elsewhere in the program, the local definitions
(with the new name) can now be "promoted" to the top level of the program without affecting
anything outside of the local

e We can now use our existing rules to evaluate the program

> Example: evaluating t-area4

We'll need a fresh identifier to replace s. We'll use s_1, which we just made up.

(t-aread 3 4 5) =
(local [(define s (/ (+ 3 4 5) 2))]
(sqrt (* s (- s 3) (- s 4) (- s5))))=
(define s_1 (/ (+ 3 4 5) 2))
(sqrt (* s_1 (- s_13) (- s_14) (-s_15)))=
(define s_1 (/ 12 2))
(sqrt (x s_1 (- s_1 3) (- s-14) (- s_15))) =
(define s_1 6)
(sqrt (* s_1 (- s_13) (- s_14) (-s_15)))=...6

Motivation Semantics Reasons Terminology
0000000 0008000 000000000000000000000000000 0000
12/41 12: Local Definitions CS 135
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> Substitution rule for 1ocal

In general, an expression of the form
(Local [(define x_1 exp_1) ... (define x_n exp_n)] bodyexp)
is handled as follows:

@ x_i is replaced with a fresh identifier (call it x_i_new) everywhere in the local
expression, for 1 </ < n.

@ The definitions (define x_1 new exp_1) ... (define x_n_new exp_n) are
then lifted out (all at once) to the top level of the program, preserving their
ordering.

@ What remains looks like (Local [] bodyexp'), where bodyexp' is the rewritten
version of bodyexp. Replace the local expression with bodyexp'.

All of this (the renaming, the lifting, and removing the local with an empty
definitions list) is a single step.

Moativation Semantics Reasons Terminology
0000000 0000800 000000000000000000000000000 {

0000
13/41 12: Local Definitions CS 135

Revising function substitution
e The previous statement about using our existing rules was not quite correct

e Consider the code below:
(define (foo x y)
(+ (Local [(define x y)
(define z (+ x y))]
(+ x z2))

x)) When (foo 2 3) is evaluated,
the x inside the local is not
substituted with 2 because x
(foo 2 3) is redefined in local

(f v.1 ... v_n) = exp' where (define (f x_1 ... x_n) exp) occurs to the left,
and exp' is obtained by substituting into the expression exp, with all occurrences
of the formal parameter x_i replaced by the value v_i (for i from 1 to n) except
where x_i has been redefined within exp (e.g. within a local).
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Reasons

Friday, November 6, 2020 19:56

Reasons to use local
e Clarity: naming subexpressions
e Efficiency: avoid recomputation
e Encapsulation: hiding stuff
e Scope: reusing parameters

Clarity: naming subexpressions
e A subexpression used twice within a function body always yields the same value
e Using local to give the reused subexpression a name improves the readability of the code
e Recall t-area. Naming the subexpression made the relationship to Heron's Formula clear

(define (t-area-v4 a b c)
(local [(define s (/ (+ a b c) 2))]
(sqrt (* s (- s a) (- sb) (-sc)))))

Clarity: mnemonic names
e Sometimes we choose to use local in order to name subexpressions mnemonically to make
the code more readable, even if they are not reused
e This may make the code longer

(define-struct coord (x y))
(define (distance pl p2)
(sqrt (+ (sqr (- (coord-x pl) (coord-x p2)))
(sqr (- (coord-y pl) (coord-y p2))))))

(define (distance pl p2)
(local [(define delta-x (- (coord-x pl) (coord-x p2)))
(define delta-y (- (coord-y pl) (coord-y p2)))]
(sqrt (+ (sqr delta-x) (sqr delta-y)))))

Efficiency: avoid recomputation
e We can use local to avoid recomputation
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» Efficiency: max-1list without local

;3 (max-list-v2 lon) produces the maximum element of lon
;; Examples:
(check-expect (max-list-v2 (list 6 2 37 1)) 7)

;3 max-list-v2: (listof Num) — Num
53 Requires: lon is nonempty
(define (max-list-v2 lon)
(cond [(empty? (rest lon)) (first lon)]
[(> (first lon) (max-list-v2 (rest lon))) (first lon)]
[else (max-list-v2 (rest lon))]))

» Efficiency: max-1ist with local

;3 (max-list-v4 lon) produces the maximum element of lon
(check-expect (max-list-v4 (list 1 3 25 4)) 5)

;3 max-list-v4: (listof Num) — Num

4 requires: lon is nonempty

(define (max-list-v4 lon)

(cond [(empty? (rest lon)) (first lon)]
[else
(Local [(define max-rest (max-list-v4 (rest lon)))]
(cond [(> (first lon) max-rest) (first lon)]
[else max-rest]))]))

This is the fourth approach we have seen to find the maximum value in a non-empty list:
max-list-vl used the built-in helper function, max

max-list-v2 had two recursive applications that led to significant efficiency issues
max-list-v3 solved the problem with an accumulator

max-list-v4 solves the problem with local

PN
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» Efficiency: search-bt-path: original

;3 search-bt-path-vl: Nat BT — (anyof false (listof Sym))
(define (search-bt-path-vl k tree)
(cond
[(empty? tree) false]
[(= k (node-key tree)) '()]
[(list? (search-bt-path-vl k (node-left tree)))
(cons 'left (search-bt-path-vl k (node-left tree)))]
[(list? (search-bt-path-vl k (node-right tree)))
(cons 'right (search-bt-path-vl k (node-right tree)))]
[else false]))

This version of search-bt-path often applies itself twice to the same argument,
resulting in an exponential growth in the number of applications as the tree
becomes larger

» Efficiency: search-bt-path: helper function

;3 search-bt-path-v2: Nat BT — (anyof false (listof Sym))
(define (search-bt-path-v2 k tree)
(cond
[(empty? tree) false]
[(= k (node-key tree)) '()]
[else (choose-path-v2 (search-bt-path-v2 k (node-left tree))
(search-bt-path-v2 k (node-right tree)))]))

(define (choose-path-v2 left-path right-path)
(cond [(list? left-path) (cons 'left left-path)]
[(list? right-path) (cons 'right right-path)]
[else falsel]))

This version uses a helper method to avoid recomputing values
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» Efficiency: search-bt-path: with local

;3 search-bt-path-v3: Nat BT — (anyof false (listof Sym))
(define (search-bt-path-v3 k bt)
(cond
[(empty? bt) false]
[(= k (node-key bt)) '()]
[else
(Local [(define left-path (search-bt-path-v3 k (node-left bt)))
(define right-path (search-bt-path-v3 k (node-right bt)))]
(cond [(list? left-path) (cons 'left left-path)]
[(List? right-path) (cons 'right right-path)]
[else false]))]))

This version uses local to avoid recomputing values

Motivation Semantics Reasons : . Terminology
0000000 0000000 000000008000000000000000000 0000
28/41 12: Local Definitions CS 135

e This new version of search-bt-path avoids making the same recursive function application
twice, and does not require a helper function

e But it still suffers from an inefficiency: we always traverse the entire tree, even if the correct
solution is found immediately in the left subtree

* We can avoid the extra search of the right subtree using nested locals

» Efficiency: search-bt-path: with nested local

;3 search-bt-path-v4: Nat BT — (anyof false (listof Sym))
(define (search-bt-path-v4 k bt)
(cond
[(empty? bt) false]
[(= k (node-key bt)) '()]
[else

(local [(define left-path (search-bt-path-v4 k (node-left bt)))]
[

Theleﬁ-paﬂ1 éHHM [(List? left-path) (cons 'left left-path)]
computed if the outer,

Eﬂse(ﬂauseisreachekflse (Local [(define right-path (search-bt-path-v4

i k (node-right bt)))]
;23 Fi)fag:]||§ rcehqeucilr(ee(;j is (cond [(list? right-path) (cons 'right right-path)]
a second local ’ [else false]))]1))]))

evaluated and the
right-path is computed

Motivation Semantics Reasons Terminology
0000000 0000000 000! 0000 0000
25/41 12: Local Definitions CS 135

Module 12 Local Definitions Page 136



Encapsulation
e Encapsulation is the process of grouping things together in a "capsule"
¢ We have already seen data encapsulation in the use of structures

e There is also an aspect of information hiding to encapsulation which we did not see with
structures

e The local bindings are not visible (have no effect) outside the local expression. Thus, they
can "hide" information from other parts of the programs

Behaviour encapsulation

e Local definitions can bind names to functions as well as values. Evaluating the local
expression creates new, unique names for the functions just as for the values
e This is known as behaviour encapsulation

e It allows us to move helper functions within the function that uses them
o They are invisible outside the function

o They do not clutter the "namespace" at the top level
o They cannot be used by mistake

Example: sum-list
(define (sum-list lon)
(local [(define (sum-list/acc lst sofar)
(cond [(empty? lst) sofar]
[else (sum-list/acc (rest lst)

(+ (first lst) sofar))]))]
(sum-list/acc lon 0)))

¢ Advantages of making the accumulatively recursive helper function local:
o It makes clear that the helper has no use outside of sum-list
o It facilitates reasoning about the program

¢ local is often used with wrapper functions

e The helper function - the one that does most of the work - is defined within the local
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» Example: Insertion sort

(define (isort lon)
(Local [(define (insert n slon)
(cond [(empty? slon) (cons n empty)]
[(<= n (first slon)) (cons n slon)]
[else (cons (first slon) (insert n (rest slon)))]))]
(cond [(empty? lon) empty]
[else (insert (first lon) (isort (rest lon)))1)))

Motivation Semantics Reasons SR Terminology
0000000 0000000 0000000000 0000080000000 0000 0000
29/41 12: Local Definitions CS 135

Encapsulation and the design recipe

e A function can enclose the cooperating helper functions inside a local, as long as these are
not needed by other functions

¢ When this happens, the enclosing function and all the helpers act as a cohesive unit

e However, the local helper functions require contracts and purposes, but not examples or
tests

e The helper functions can be tested by writing suitable tests for the enclosing function

e Make sure that the local helper functions are still tested completely
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» Design recipe example

;3 Full Design Recipe for isort goes here...
(define (isort 1lon)
(local [;; (insert n slon) inserts n into slon, preserving the order
;3 insert: Num (listof Num) — (listof Num)

Note that ;; requires: slon is sorted in nondecreasing order
insertonly ~ (define (insert n slon)

needs a (cond [(empty? slon) (cons n empty)]

purpose and [(<= n (first slon)) (cons n slon)]

a contract [else (cons (first slon) (insert n (rest slon)))]))]

Exampl¢sond [(empty? lon) empty]

and tests [else (insert (first lon) (isort (rest lon)))]1)))

are not

required
Motivation Semantics Reasons o Terminology
0000000 00C0000 - 0000000000000 000C0e000000000 0000
31/41 12: Local Definitions CS 135

Mutual Recursion
 |ocal can also handle mutually recursive functions

(local
[ (define (foo 2z)
(cond [(= z 0) 0]
[else (+ 1 (bar (- z 1)))1))
(define (bar 2z)
(cond [(= 0 z) 0]
[else (+ 1 (foo (- z 1)))]))]
(foo 5))

e foo and bar are each given fresh names and are lifted to the program's top level
e They then act just like other pairs of mutually recursive functions

Scope: reusing parameters
e Making helper functions local can reduce the need to have parameters go along for the ride
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;+ (countup-to n) produces a list of the numbers from 0 to n
;» Example:
(check-expect (countup-to 5) (list ® 12 3 405))

3 countup-to: Nat — (listof Nat)
(define (countup-to n)

(countup-from-to 0 n))
The ending point, to, never changes

Hence we describe it as "going along
;3 countup-from-to: Nat Nat — (lidardhfe Negt')

(define (countup-from-to from to)
(cond [(> from to) empty]
[else (cons from (countup-from-to (addl from) to))]))

(define (countup-v2 n)
(Local [(define (countup-from from)
(cond [(> from n) empty]
[else (cons from (countup-from (addl from)))]))]
(countup-from 0)))

e n no longer needs to be a parameter to countup-from, because it is in scope
e If we evaluate (countup-v2 10), a renamed version of countup-from with n replaced by 10 is
lifted to the top level
e If we evaluate (countup-v2 20), a renamed version of countup-from with n replaced by 20 is
lifted to the top level
Example: mult-table
e Recall that
(check-expect (mult-table 3 4)
(list (list 0 0 0 0)
(List 0 1 2 3)
(list 0 2 4 6)))
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» mult-table: original

;3 mult-table: Nat Nat — (listof (listof Nat))
(define (mult-table nr nc)
(rows-to © nr nc))

;3 (rows-to r nr nc) produces mult. table, rows r...(nr-1)
;3 rows-to: Nat Nat Nat — (listof (listof Nat))
(define (rows-to r nr nc)
(cond [(>= r nr) empty]
[else (cons (cols-to @ r nc) (rows-to (addl r) nr nc))l]))

;3 (cols-to ¢ r nc) produces entries c...(nc-1) of rth row of mult. table
;5 cols-to: Nat Nat Nat — (listof Nat)
(define (cols-to ¢ r nc)
(cond [(>= ¢ nc) empty]
[else (cons (* r c) (cols-to (addl c) r nc))l]))

» mult-table: with local

(define (mult-table2 nr nc)
(Local [;; (rows-to r) produces mult. table, rows r...(nr-1)
;; rows-to: Nat — (listof (listof Nat))
(define (rows-to r)
(cond [(>= r nr) empty]
[else (cons (cols-to O r) (rows-to (addl r)))]))

;3 (cols-to ¢ r) produces entries c...(nc-1) of rth row
;3 cols-to: Nat Nat — (listof Nat)
(define (cols-to c r)
(cond [(>= c nc) empty]
[else (cons (* r c) (cols-to (addl c) r))l1))

|
(rows-to 0)))

We will revisit this code again in M14.

¢ When the functions rows-to and cols-to are lifted to the top level they will have the values
for nr and nc "embedded" in the body of the function
e Advantages to this version of mult-table include
o Making clear that rows-to and cols-to belong to mult-table and are not expected to have
other uses
o Not needing to spend effort to determine that nc and nr do not change as the helper
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functions execute
o Simplifying the parameters for the helper functions and thus reducing the chances they
are mixed up
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Terminology

Friday, November 6, 2020 21:55

Terminology associated with local
e The binding occurrence of a name is its use in a definition, or formal parameter to a function
e The associated bound occurrences are the uses of that name that correspond to that binding
e The lexical scope of a binding occurrence is all places where that binding has effect, taking
note of holes caused by reuse of names
e Global scope is the scope of top-level definitions
e If you click "Check Syntax" and then hover your mouse over a binding occurrence, it will draw

arrows to the bound occurrences
[ NN ) mult-table2.rkt - DrRacket

multdable2.idy  (dofine .} v Check Syntax V¢ Step 5] Runfp Siop [l

1
2 | (define (mult-table2 nr nc)

3 (local [;; (rows-to r) produces mult. table, rows r...(nr-1)
4 :: rows—to: Nat Nat Nat —> (listof (listof Nat))

5 (define (rows—to 44[3 bound occurrences]
6

7

8

9

(cond [(>= ¢#'nr) emp \fﬁm—w
[else (cons (%} (rows-to (a )N1))

;3 (cols-to c r) produces entries c...(nc-1) of rth row
10 ;; cols—to: Nat Nat Nat — (listof Nat)

11 (define (cols-to c r)

12 (cond [(>= ¢ nc) empty]

13 [else (cons (% r c) (cols-to (addl c) r))]))

14 ]

15 (rows-to 0)))

17
Intermediate Student v 10 62091MB] | §

e Hovering over a bound occurrence will draw an arrow from the binding occurrence and highlight
the other bound occurrences
e The "holes" are the occurrences of x that are not highlighted due to the re-definition of x in local

[ BON Untitled 5 - Drf
Untitied v  (dofine ..) v w5

(define (foo ¥ y) |1 bound occurrence|
(+ (local
[(define x y)
(define\z (+ x y))]
(+ x z)) %))

(foo 2 3)

1
2
3
4
5
6
7
D |
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Intro

Saturday, November 7, 2020 21:14

First class values
» Racket is a functional programming language, primarily because Racket's functions are first class values
e Functions have the same status as the other values we have seen. They can be:
o consumed as function arguments
o produced as function results
o bound to identifiers
stored in lists and structures
e Functions are first class values in the Intermediate Student (and above) versions of Racket

o
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Consume

Saturday, November 7, 2020 21:26

Consuming functions
¢ In Intermediate Student a function can consume another function as an argument

(define (foo f x y) (f x y))
(foo+ 2 3)=(+23)=5
(foo * 2 3) = (*x 2 3)=6

(foo append '(a b c) '(1 2 3))
= (append '(a b c) '(12 3))
= ‘tabclZg)

Example
e Consider two similar functions, eat-apples and keep-odds

(define (eat-apples lst)
(cond [(empty? lst) empty]
[(not (symbol=? (first lst) 'apple))
(cons (first lst) (eat-apples (rest lst)))]
[else (eat-apples (rest 1lst))]))

(define (keep-odds 1st)
(cond [(empty? lst) empty]
[(odd? (first 1st))
(cons (first lst) (keep-odds (rest lst)))]
[else (keep-odds (rest lst))]))

e What these two functions have in common is their general structure

* Where they differ is in the specific predicate used to decide whether an item is removed from the
answer or not

e Because functions are first class values, we can write one function to do both these tasks because
we can supply the predicate as an argument to that function
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> Abstracting keep-odds to my-filter

(define (keep-odds 1lst)
(cond [(empty? lst) empty]
[(odd? (first 1lst))
(cons (first lst) (keep-odds (rest 1st)))]
[else (keep-odds (rest 1lst))]))

(define (my-filter pred? 1lst)
(cond [(empty? lst) empty]
[(pred? (first 1lst))
(cons (first lst) (my-filter pred? (rest lst)))]
[else (my-filter pred? (rest lst))]))

» Tracing my-filter

(define (my-filter pred? lst)
(cond [(empty? 1st) empty]
[(pred? (first lst))
(cons (first lst) (my-filter pred? (rest lst)))]
[else (my-filter pred? (rest lst))]))

(my-filter even? (list 0 1 2 3 4))
= (cond [(empty? (list 0 1 2 3 4)) empty]
[(even? (first (list 0 1 2 3 4)))
(cons (first (list 06 1 2 3 4))
(my-filter even? (rest (list 0 1 2 3 4))))]
[else (my-filter even? (rest (list © 12 3 4)))]))
= (cons 0 (my-filter even? (list 1 2 3 4)))
= (cons 0 (my-filter even? (list 2 3 4)))
=*(cons 0 (cons 2 (cons 4 empty)))

e my-filter performs the same actions as the built-in function filter

« filter handles the general operation of selectively keeping items on a list

e Functions such as filter that consume a (listof X) and a function to generalize it are called abstract
list functions (abbreviated ALFS) or higher order functions
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Using my-filter
(define (keep-odds lst) (my-filter odd? 1lst))

(define (not-symbol-apple? item) (not (symbol=? item 'apple)))
(define (eat-apples 1lst) (my-filter not-symbol-apple? 1lst))

e The function filter. which behaves identically to my-filter, is built into Intermediate Student and full
Racket

« filter and other abstract list functions provided in Racket are used to apply common patterns of
simple recursion

e Functions like eat-apples that require a custom predicate are often ideal candidates for local
e For example, instead of the code shown on the slide, consider

(define (eat-apples lst)
(local [(define (not-symbol-apple? item) (not (symbol=? item 'apple)))]
(filter not-symbol-apple? 1st)))

Advantages of functional abstraction
e Functional abstraction is the process of creating abstract functions such as filter
e Advantages include

reducing code size

avoiding cut-and-paste

fixing bugs in one place instead of many

improving one functional abstraction improves many applications

o

o O O
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Produce

Sunday, November 8, 2020 14:58

Producing functions
¢ We have seen that local could be used to create functions during a computation, to be used in
evaluating the body of the local
e Because functions are values, the body of the local can produce such a function as a value

Example: make-adder
(define (make-adder n)
(local
[(define (f m) (+ nm))]
f))

Trace of (make-adder 3)

(make-adder 3)
= (local [(define (f m) (+ 3 m))] f)
= (define (f_1 m) (+ 3 m)) f_1

e (make-adder 3) is the renamed function f_1, which is a function that adds 3 to its argument
e We can do the following things:

o apply this function immediately

o use it in another expression

o putitin a data structure

Example: make-adder applied immediately
((make-adder 3) 4)
= ((local [(define (f m) (+ 3 m))] f) 4)
= (define (f_1 m) (+ 3 m)) (f_1 4)
= (+34)=17
e Before:
o First position in an application must be a built-in or user-defined function
o A function name has to follow an open parenthesis
e Now:
o First position can be an expression (computing the function to be applied). Evaluate it along
with the other arguments

o A function application can have two or more open parentheses in a row:
((make-adder 3) 4)

A note on scope
(define (add3 m) (define (make-adder n)
(+ 3 m)) (local [(define (f m) (+ n m))]
f))

e In add3, the parameter m is of no consequence after add3 is applied. Once add3 produces its
value, m can be safely forgotten
¢ In make-adder, after the parameter n is applied it does have a consequence.
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It is embedded into the result, f, where it is "remembered" and used again, potentially many times

Producing and consuming functions
e Using local to produce a function gives us a way to create semi-custom functions "on the spot" to
use in expressions.
e This is particularly useful with Abstract List Functions (ALFs) such as filter
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Bind
Sunday, November 8, 2020 15:54

Binding functions to identifiers
e The result of make-adder can be bound to an identifier and then used repeatedly

(define add2 (make-adder 2))
(define add3 (make-adder 3))

(add2 3) = 5
(add3 10) = 13
(add3 13) = 16

¢ \We can hind a value like 3 or "Hello" to an identifier to make a constant
e Because functions are values, we can do that with functions, too

e (make-adder 2) produces a function. (define add2 (make-adder 2)) gives that function a name so it
can be used over and over

Tracing a bound identifier

(define add2 (make-adder 2))

= (define add2 (local [(define (f m) (+ 2 m))] f))

= (define (f_1 m) (+ 2 m)) ; rename and lift out f
(define add2 f_1)

(add2 3)
= (f_1 3)
= (+ 2 3)
= 5
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Store

Sunday, November 8, 2020 16:16

Storing functions in lists and structures
¢ Recall our code in module 11 for evaluating arithmetic expressions
(define-struct opnode (op args))
;; An OpNode is a (make-opnode (anyof 'x '+) (listof AExp)).
;3 An AExp is (anyof Num OpNode)

;5 (eval exp) evaluates the arithmetic expression exp.
;; Examples:

(check-expect (eval 5) 5)

(check-expect (eval (make-opnode '+ (list 1 2 3 4))) 10)
(check-expect (eval (make-opnode '+ (list ))) 1)

;5 eval: AExp — Num

> Example: eval and apply from M11

;; eval: AExp — Num
(define (eval exp)
(cond [(number? exp) exp]
[(opnode? exp) (my-apply (opnode-op exp) (opnode-args exp))l))

;3 (my-apply op args) applies the arithmetic operator op to args.
;3 my-apply: (anyof '+ 'x) (listof AExp) — Num
(define (my-apply op args) Code that is underlined
(cond [(empty? args) (cond [(symbol=? op '+) 0] means it repeats at least
[(symbol=? op '*) 11)] once in my-apply
[(symbol=? op '+) (+ (eval (first args))
(my-apply op (rest args)))]
[(symbol=? op '*) (* (eval (first args))
(my-apply op (rest args)))l))
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> Example: Evaluating expressions with functions

In opnode we can replace the symbol representing a function with the function

itself:

(define-struct opnode (op args))

;3 An opnode is a (make-opnode (anyof ... (listof AExp)))

;3 An AExp is (anyof Num opnode) The key insight is that we will store

the function itself (a first class
value) in the opnode structure
The ... in opnode's data definition
is because we do not have a way
to express a function's type

(check-expect (eval 3) 3)
(check-expect (eval (make-opnode + '(2 3 4))) 9)
(check-expect (eval (make-opnode + '())) 0)

Some observations about Intermediate Student that will be handy:

(+12)=3 (*x 23)=6

(+1)=1 (x 2) =2

(+ ) = @ (+)produces the additive identity, Q« ) = 1 (*) produces the multiplicative identity, 1
Intro Consume Produce Bind Store Contracts and types Example
00 00000000000000 000000 {ele] 008000000 0000000000 000000
22/42 18: Functions as Values CS 185

> Example: Evaluating expressions with functions

eval does not change. Here are the changes to my-apply:

(define (my-apply op args)
(cond [(empty? args) (cond [(symbol=? op '+) 0]
[(symbol=? op 'x) 1])]
Old: [(symbol=? op '+) (+ (eval (first args))
(my-apply op (rest args)))l]
[(symbol=? op '*x) (x (eval (first args))
(my-apply op (rest args)))]))

(define (my-apply op args)
(cond [(empty? args) (op )]

New: :
[else (op (eval (first args))
(my-apply op (rest args)))l]))
Intro Consume ) Produce Bind Store Contracts and types Example
el 0000000000000 000000 00 000800000 0000000000 Q00000
23/42 13: Functions as Values CS 135

e my-apply is now consuming a function rather than a symbol

¢ In the base case, (op ) produces the identity appropriate to the operator

¢ |n the recursive case. The op is applied to the first expression on the list of arguments and the
result of applying the operator to the rest of the arguments

e This works for any binary function that is also defined for zero arguments

> Example: Functions in a table (1/2)

Key idea: make a dictionary (implemeted as an
(define trans-table (list (list '+ +) association list) mapping symbols to the
(list '*x x))) functions they represent
lookup-al consumes a symbol and produces the
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{aerine trans-tanle (L1ST (L1ST "+ +) associaton liISt) mapping Sympois 10 e
(list '* x))) functions they represent
lookup-al consumes a symbol and produces the
;3 (lookup-al key al) finds the value in %ﬂ”@ﬁppggﬂgﬁ3f3§“QB key
;; lookup-al: Sym AL — ?2??
(define (lookup-al key al)
(cond [(empty? al) false]
[(symbol=? key (first (first al))) (second (first al))]
[else (lookup-al key (rest al))l))

Now (lookup-al '+ trans-table) produces the function +.
The double parenthesis here means we are
((lookup-al '+ trans-table) 3 4 5) = 12 evaluating look-al to obtain the function to use

> Example: Functions in a table (2/2)

We use lookup-al to translate a symbol into a
function it represents. Then it becomes the

;3 (eval ex) evaluates the arithmetic expression ex.Op parameter to my-apply

3 eYal: AExp — Num We are using a list rather than the opnode
(define (eval ex) structure. Therefore we get the operator with
(cond [(number? ex) ex] (first ex) and the arguments with (rest ex)

[(cons? ex) (my-apply (lookup-al (first ex) trans-table)
(rest ex))1))

;3 (my-apply op exlist) applies op to the list of arguments.
;5 my-apply: ??? (listof AExp) — Num
(define (my-apply op args)
(cond [(empty? args) (op )] my-apply consumes a function

A and a list of arguments, which is
[else (op ::;?_’:m(){;rz; 7:2:1):)args)))])) identical to the previous version

Summary: Functions in lists and structures

e We have stored functions in both a structure and a list

e Using a function instead of a symbol get rid of repetitive code in my-apply

¢ Using quote notation makes our expressions more succinct, but forced us to deal again with
symbols to represent functions

e Putting symbols and functions in an association list provided a clean solution
Adding a new binary function (also defined for zero arguments) only requires a new line in trans-
table

Functions as first class values (summary)
e As a first class value, we can do anything with a function that we can do with other values
o consume: my-apply consumes the operator
produce: lookup-al looks up a symbol, producing the corresponding function
bind: results of lookup-al to op (a parameter)
store: stored in trans-table

o O O
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Contracts and types

Monday, November 9, 2020 16:37

Contracts and types
e Contracts describe the type of data consumed and produced by a function
e What is the type of a function consumed or produced by another function?
e We can use the contract for a function as its type
e For example, the type of > is (Num Num -> Bool), the contract of that function

> Contracts as types: Example

(define trans-table (list (list '+ +)
(list 'x x)))

;3 (Lookup-al key al) finds the value in al corresponding to key
;3 lookup-al: Sym (listof (list Sym (Num Num — Num))) —
- (anyof false (Num Num — Num))
(define (lookup-al key al)
(cond [(empty? al) false]
[(symbol=? key (first (first al))) (second (first al))]
[else (lookup-al key (rest al))l]))

Intro Consume Produce Bind Stwore ontracts and types Exampl
o]0 00000000000000 000000 o]0 000000000 0008000000 Q00000
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Contracts for abstract list functions
e filter consumes a function and a list, and produces a list
e We might be tempted to conclude that its contract is

e (Any — Bool) (listof Any) — (listof Any)

e The application (filter odd? (list 1 2 3)) does not obey the contract (the contract for odd? is
Int -> Bool) but still works as desired

e There is a relationship among the two arguments to filter and the result of filter

Parametric types

e An application of (filter pred? Ist) can work on any type of list, but the predicate provided
should consume elements of that type of list

¢ In other works, we have a dependency between the type of the predicate and the type of the
list

e To express this, we use a type variable, such as X, and use it in different places to indicate
where the same type is needed

e |tis a symbol that stands for some specific but currently unknown type

The contract for filter
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e filter consumes a list of type (listof X)

e This implies that the predicate must consume an X. The predicate must also produce a Bool.
It thus has a contract (and type) of (X -> Bool)

e filter produces a list of the same type it eonsumes

e Therefore the contract for filter is:

0 filter: (X — Bool) (listof X) — (listof X)

e Here X stands for the unknown data type of the list
e filter is polymorphic or generic. It works on many different types of data

Using contracts to understand
e Many of the difficulties one encounters in using abstract list functions can be overcome by
careful attention to contracts
e For example, the contract for the function provided as an argument to filter says that it
consumes one argument and produces a Boolean value.
e This means we must take care to never use filter with an argument that is a function
consuming two variables, or producing a number
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Example

Monday, November 9, 2020 17:21

Example: Simulating structures
e We can use the ideas of producing and binding functions to simulate structures
e Consider a structure representing a point:

(define-struct point (x y))
;7 A Point is a (make-point Num Num)
e This can be simulated with a function:
;3 (mk-point x y) produces a "structure" representing (x,y).
;3 mk-point: Num Num —
(define (mk-point x vy)
(Local [(define (symbol-to-value s)
(cond [(symbol=? s 'x) x]
[(symbol=? s 'y) y]))]
symbol-to-value))

Tracing mk-point
(define pl (mk-point 3 4))
= (define pl (local [(define (symbol-to-value s)
(cond [(symbol=? s 'x) 3]
[(symbol=? s "y) 4]))]
symbol-to-value))

* Notice how the parameters have been substituted into the local definition
e We now rename symbol-to-value and lift it out

= (define (symbol-to-value_1 s)

(cond [(symbol=? s 'x) 3]
[(symbol=? s 'y) 4]))

(define pl symbol-to-value_1)

e plis now a function with the x and y values we supplied to mk-point coded in
e To get out the x value, we can use (p1l 'x)

(pl 'x) = (symbol-to-value_1l 'x) = ... =3

¢ We can define a few convenience functions to simulate the structure accessor
functions point-x and point-y

(define (point-x p) (p 'x))
(define (point-y p) (p 'y))

e |f we apply mk-point again with different values, it will produce a differnet rewritten and
lifted version of symbol-to-value, say symbol-to-value 2
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Simulating structures summary

e The result of a particular application, say (mk-point 3 4) is a "copy" of symbol-to-value
with 3 and 4 subsituted for x and y, repectively

e That "copy" can be used much later, to retrieve the value of x or y that was supplied to
mk-point

e This is possible because the "copy" of symbol-to-value, even though it was defined in a
local definition, survives after the evaluation of the local is finished
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Anonymous functions

Thursday, November 12, 2020 16:13

Abstraction

Abstraction is the process of finding similarities or common aspects, and forgetting
unimportant differences
Example: writing a function
o The differences in parameter values are forgotten, and the similarity is captured in the
function body
o Similarities between functions are captured in function templates

Anonymous functions
(define (not-symbol-apple? item) (not (symbol=? item 'apple)))
(define (eat-apples 1lst) (filter not-symbol-apple? lst))

not-symbol-apple? is unlikely to be needed elsewhere
We can avoid cluttering the top level with such definitions by putting them in local expressions

(define (eat-apples lst)

(Local [(define (not-symbol-apple? item)
(not (symbol=? item 'apple)))]
(filter not-symbol-apple? 1st)))

Introducing lambda

(Local [(define (name-used-once x_1 ... x_n) exp)]

name-used-once)

can also be written as
(Llambda (x_1 ... x_n) exp)

lambda can be thought of as "make-function”

It can be used to create a function which we can then use as a value, for example, as the
value of the first argument of filter

When a function produced in a local is only used once, lambda gets rid of the code that is not
actually needed

(tocat—{{define (mame—used=-omce x_1 ... x_n) exp)d-
|

(Lambda (x_1 ... x_n) exp)

We need lambda, a list of parameter names and the expression using them
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> Example: define eat-apples with 1ambda

We can use lambda to replace

(define (eat-apples 1lst)
(filter (local [(define (not-symbol-apple? item)
(not (symbol=? item 'apple)))]
not-symbol-apple?)
1lst)

with the following:

(define (eat-apples lst)
(filter (lambda (item) (not (symbol=? item 'apple))) lst))

But how does this work? As usual, we’'ll approach it with a trace.

Anonymous functions Syntax Example Map Foldr Fold! Build-list
0000080000 000000000 00000000 000000000 000000000000000000000000 000000000 00000000
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Other examples of using lambda with filter
(define 1st "(3 59 55 4))

(filter (lambda (x) (= 5 x)) lst) ==>» "(6 5 5)
(filter (lambda (x) (and (<= 3 x) (<= x 5))) 1lst) ==» "(3 555 4)
(filter (lambda (s) (char>? s #\Z)) "(#\B #\a #\y)) ==» "(#\a #\y)
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» Tracing eat-apples

(define (eat-apples lst)
(my-filter (lambda (item) (not (symbol=? item 'apple))) lst))

(eat-apples '(pear apple))
= (my-filter (lambda (item) (not (symbol=? item 'apple)))) '(pear apple))
= (cond [(empty? '(pear apple)) empty]
[((Lambda (item) (not (symbol=? item ’apple))))
(first '(pear apple)))
(cons (first '(pear apple))
(my-filter (lambda (item) (not (symbol=? item 'apple))))
(rest '(pear apple))))]
[else (my-filter (lambda (item) (not (symbol=? item 'apple))))
(rest '(pear apple)))]))

What does the underlined expression mean?

Anonymous functions Syntax Example Map Foldr Foid! Build-fist
0000008000 000000000 00000000 000000000 000000000000000000000000 000000000 00000000
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((Lambda (item) (not (symbol=? item 'apple)))) (first '(pear apple)))

e The double parentheses indicates that we need to compute the function (the inner expression)
to apply to the arguments (the outer expression)
* In this case, compute means creating the function using lambda

e Lambda expressions are already in the simplest form, so the next step in the trace is to reduce
the arguments to values:

= ((lambda (item) (not (symbol=? item ‘'apple)))) ‘'pear)

e Finally, each argument is matched with the corresponding parameter and then substituted into
the function's body expression each place that parameter appears. The entire expression is
replaced with the rewritten body expression

= (not (symbol=? 'pear 'apple))
> Using lambda

We can use lambda to simplify make-adder. Instead of

(define (make-adder n)
(local [(define (f m) (+ n m))]
f))

we can write:

(define (make-adder n)
(lambda (m) (+ n m)))
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(define (make-adder n)
(lambda (m) (+ n m)))
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Syntax

Thursday, November 12, 2020 17:12

Syntax and semantics

* When we first encountered ((make-adder 3) 4), we noted the differences in function
application:
o Before Module 13

= First position in an application must be a built-in or user-defined function
= A function name has to follow an open parenthesis
o Module 13 and later

= First position can be an expression (computing the function to be applied). Evaluate
it along with the other arguments

= A function application can have two or more open parentheses in a row:
((make-adder 3) 4) or

((Lambda (x y) (+ x y x)) 1 2)
e These observations are also true of using lambda

> Substitution rule

We need a rule for evaluating applications where the function being applied is
anonymous (a lambda expression).

((lambda (x_1 ... x_n) exp) v_1 ... v_n) = exp'

where exp' is exp with all occurrences of x_1 replaced by v_1, all occurrences of
x_2 replaced by v_2, and so on.

As an example:

((Lambda (x y) (* (+ y 4) x)) 5 6)
= (x (+ 6 4) 5)

=% iz o == D
Anonymous functions Syntax Example Map Foldr Fold! Build-fist
0000000000 080000000 00000000 000000000 000000000000000000000000 000000000 00000000
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> Example: Tracing with lambda (1)

(define foo (lambda (x) (+ 10 x)))

(foo 5)

= ((lambda (x) (+ 10 x)) 5)
= (+ 10 5)
= 15

In this example, foo is defined as a constant.

Like any constant, its value needs to be substituted into the expression

> Example: Tracing with lambda (2)

Here's make-adder rewritten using lambda.

(define make-adder
(lambda (x)
(lambda (y)

(+ X ¥11))

What is ((make-adder 3) 4)?
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> Example: Tracing with lambda (2)

(define make-adder
(Lambda (x)
(Lambda (y)
(+ x y))))

(define make-adder (lambda (x) (lambda (y) (+ x y))))
((make-adder 3) 4) = ;5 substitute the lambda expression
(((lambda (x) (lambda (y) (+ x y))) 3) 4) =

((lambda (y) (+ 3 vy)) 4) =

(+ 34)=>7

make-adder is defined as a constant using lambda. Like any other constant,
make-adder is replaced by its value (the lambda expression).

Anonymous functions Syntax Example Map Foldr Foldl Build-list
0000000000 000080000 00000000 000000000 000000000000000000000000 000000000 00000000
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lambda and function definitions
e |lambda underlies the definition of functions
Until now, we have had two different types of definitions

;3 a definition of a numerical constant

(define interest-rate 3/100)

;3 a definition of a function to compute interest

(define (interest-earned amount) (x interest-rate amount))
e But there is really only one kind of define, which binds a name to a value
e Internally,

(define (interest-earned amount) (* interest-rate amount))

is translated to

(define interest-earned (lambda (amount) (* interest-rate amount)))
which binds the name interest-earned to the function value

(Lambda (amount) (* interest-rate amount))

e Using short names to make the transformation

(define i-rate 8.83)
(define {i-earn amount) (* i-rate amount))

(define i-earn (local [(define (f amount) (* i-rate amount))] +))

(define i-earn (lambda (amount) (* i-rate amount)))
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(define i-earn (lambda (amount) (* i-rate amount)))

(lambda )

Edefine*f&;;arn amount) (% i-rate amount))

(define i-earn (lambda (amount) (% i-rate amount)))
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Example

Sunday, November 15, 2020 15:41
> Example: character transformation in strings
We'd like a function, transform, that transforms one string into another according

to a set of rules that are specified when it is applied.

In one application, we might want to change every instance of ‘a’toa ‘b’. In
another, we might transform lowercase characters to the equivalent uppercase
character and digits to .

(check-expect (transform "abracadabra" ...) "bbrbcbdbbrb")
(check-expect (transform "Testing 1-2-3" ...) "TESTING *-*-x*")

We use ... to indicate that we still need to supply some arguments.

Anonymous functions Syntax Example Map Foldr Fold! Build-fist
0000C00000 000000000 08000000 000000000 000000000000000000008000 000000000 00000000
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> Example: inspiration

We could imagine transform containing a cond:

(cond [(char=? ch #\a) #\b]
[(char-lower-case? ch) (char-upcase ch)]
[(char-numeric? ch) #\x]

.)

But this fails for a number of reasons:

@ The rules are “hard-coded”; we want to supply them when tranform is applied.
@ A lower case ‘a’ would always be transformed to ‘b’; never to ‘B’.

But the idea is inspiring...

Anonymous functions Syntax Example Map Foldr Fold! Build-fist
0000000000 000000000 00800000 000000000 000000000000000000000000 000000000 00000000
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> Example: core idea

Suppose we supplied transform with a list of question/answer pairs:

;3 A TransformSpec is one of:
v * empty
;3 * (cons (list Question Answer) TransformSpec)

Like cond, we could work our way through the TransformSpec with each character.
If the Question produces true, then apply the Answer to the character. If the
Question produces false, go on to the next Question/Answer pair.

What are the types for Question and Answer?

Anonymous functions Syntax Example Map Foldr Foldl Build-fist
0000000000 000000000 00080000 000000000 000000000000000000000000 000000000 00000000
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Map

Sunday, November 15, 2020 16:15
Deriving map

Here are two early list functions we wrote.

(define (negate-list 1st)
(cond [(empty? lst) empty]
[else (cons (- (first 1lst))
(negate-list (rest lst)))]1))

(define (compute-taxes payroll)
(cond [(empty? payroll) empty]
[else (cons (sr->tr (first payroll))
(compute-taxes (rest payroll)))]))

Anonymous functions Syntax Example Map Foldr Foldl Build-list
0000000000 000000000 00000000 #00000000 000000000000000000000000 000000000 00000000
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> Abstracting another set of examples

We look for a difference that can’t be explained by renaming (it being what is
applied to the first item of a list) and make that a parameter.

(define (compute-taxes payroll)
(cond [(empty? payroll) empty]
[else (cons (sr->tr (first payroll))
(compute-taxes (rest payroll)))]))

(define (my-map f 1st) The underlined portions of my-map
(cond [(empty? 1lst) empty] are the changes required to
[else (cons (f (first 1lst)) account for the differences between
(my-map f (rest lst)))])) negate-listand compute-taxes

Anonymous functions Syntax Example Map Foldr Fold! Build-fist
0000000000 000000000 00000000 080000000 000000000000000000000000 000000000 00000000
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> Tracing my-map

(define (my-map f 1lst)
(cond [(empty? 1st) empty]
[else (cons (f (first lst))
(my-map f (rest lst)))]))

(my-map sqr (list 3 6 5))

= (cons 9 (my-map sqr (list 6 5)))

= (cons 9 (cons 36 (my-map sqr (list 5))))

= (cons 9 (cons 36 (cons 25 (my-map sqr empty))))
= (cons 9 (cons 36 (cons 25 empty)))

my-map performs the general operation of transforming a list element-by-element
into another list of the same length.

Build-list

Anonymous functions Syntax Example Foldl

0000000000 000000000 00000000 008000000 000000000000000000000000 000000000 00000000
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Effects of my-map

e (my-map f (list x_1 x_2 ... x_n)) has the same effect as evaluating (list (f x_1) (f x_2) ... f(x_n))

(my-map even? '(0 1 2 3 4))

¥ 3 0 1 2 3 4 I
even even even even even
? ? ? ? ?
true false true false true I

Using my-map

e We can use my-map to give short definitions of a number of functions we have written to

consume lists

(define (negate-list 1st)

(my-map - lst))

(define (compute-taxes lst) (my-map sr->tr 1lst))

The contract for my-map

e my-map consumes a function and a list, and produces a list
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Foldr

Tuesday, November 17, 2020 17:38

Abstract list functions that produce values
¢ The functions we have worked with so far consume and produce lists

¢ What about abstracting from functions such as count-symbols and sum-of-numbers, which
consume lists and produce simple values?

> Examples

(define (sum-of-numbers 1lst)
(cond [(empty? lst) 0]
[else (+ (first 1lst)
(sum-of-numbers (rest 1st)))]1))

(define (prod-of-numbers 1lst)
(cond [(empty? lst) 1]
[else (* (first 1lst)
(prod-of-numbers (rest lst)))]))

(define (all-true? 1st)
(cond [(empty? lst) truel]
[else (and (first 1lst)
(all-true? (rest lst)))1))

Anonymous functions Syntax Example Map Foldr ] E Foldl Buiid-fist
0000000000 000000000 00000000 000000000 080000000000000000000000 000000000 00000000
37/69 14: Functional Abstraction CS 135

Similarities and differences
e Each example has a base case which is a value to be returned when the list supplied is empty
e Each example is applying some function to combine (first Ist) and the result of a recursive

function application with argument (rest Ist)
Comparison to the list template
(define (list-template 1lst)
(cond [(empty? lst) ...] basevalue
[else (... (first Llst)
combine (list-template (rest lst)) ...)]1))

¢ We replace the first ellipsis by a base value
¢ We replace the rest of the ellipses by some function which combines (first Ist) and the result of
a recursive function application on (rest Ist)

¢ This suggests passing the base value and the combining function as parameters to an abstract
list function
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> The abstract list function foldr

(define (my-foldr combine base 1lst)
(cond [(empty? lst) base]
[else (combine (first 1st)
(my-foldr combine base (rest lst)))]))

foldr is also a built-in function in Intermediate Student With Lambda.

combine: a function that combines two values, the first thing on the list and
the result of processing the rest of the list

base: a value to provide when we hit the base case

> Tracing my-foldr

(define (my-foldr combine base lst)
(cond [(empty? lst) base]
[else (combine (first 1lst)
(my-foldr combine base (rest lst)))]))

(my-foldr f 0 (list 36 5)) =

(f 3 (my-foldr f 0 (list 6 5))) =

(f 3 (f 6 (my-foldr f 0 (list 5))) =

(f 3 (f6 (f5 (my-foldr f 0 empty))) =
(T 3 (T 6 (f5 9)))=uun

Intuitively, the effect of the application
(foldr f b (list x_1 x.2 ... x_n)) is to compute the value of the expression
(F X1 (F %2 (s e (F 30 B)))).

Module 14 Functional Abstraction Page 171



> Tracing my-foldr

(foldr T b (Eist x 1 %2 ... Xn)) =8 (Tl (Ff %2 (... (T2nb))))

(foldr string-append "2B" '("To" "be" "or" "not")) => "Tobeornot2B"

HTO" ((bel! HorH linot!! I

by Lo by A
G2 | =) | G2)| =

“Tobeornot2B” “beornot2B” “ornot2B” “not2B”

Anonymous functions Syntax Example Map Foldr Foldl Build-fist
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foldr

¢ foldr is short for "fold right"
¢ The reason for the name is that it can be viewed as "folding" a list using the provided combine
function, starting from the right-hand end of the list

(foldr + @ ‘(1 2 3 4 5))

4
9

Contract for foldr
e (XY ->Y)Y (listof X) ->Y

> Using foldr
(define (sum-of-numbers lst) (foldr + 0 1lst))
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(define (sum-of-numbers lst) (foldr + 0 1lst))

If Lstis (List x 1 x 2 ... x n), then by our intuitive explanation of foldr, the
expression (foldr + 0 1lst) reduces to

(+ x_ 1 (+ X: 2 (+ (+ X_Nn O))))

Thus foldr does all the work of the template for processing lists, in the case of
sum-of-numbers.

Anonymous functions Syntax Example Map Foldr Foldl : Build-fist
0000000000

000000000 00000000 000000000 000000000800000000000000 000000000 00000000
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Using foldr

The function provided to foldr consumes two parameters - one is an element in the list which is
an argument to foldr, and one is the result of reducing the rest of the list

Sometimes one of those arguments should be ignored, as in the case of using foldr to compute
count-symbols

(define (count-symbols 1lst)
(cond [(empty? lst) 0]
[else (+ 1

(count-symbols (rest lst)))]))
The first argument to the function provided to foldr contributes 1 to the count. Its actual value is
irrelevant

In this case, the function provided to foldr can ignore the value of the first parameter and just
add 1 to the result of recursing on the rest.

(define (count-symbols lst) (foldr (lambda (x rror) (addl rror)) 0 lst))
The function provided to foldr, namely

(Lambda (x rror) (addl rror))

ignores its first argument
Its second argument is the result of recursing on the rest (rror) of the list. In this case it is the
length of the rest of the list, to which 1 must be added

Using foldr to produce lists

So far, the funcitons we have been providing to foldr have produced numerical results, but they
can also produce cons expressioons

foldr is an abstraction of simple recursion on lists, so we should be able to use it to implement
negate-list, which takes the first element from the list, negates it, and cons it onto the result of
the recursive function application

We need to define a function (lambda (x rror) ...) that combines x and rror where X is the first
element of the list and rror is the result of the recursive function application on the rest of the
list.
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> negate-list USing foldr

The function we need is We'll start using the terminology non-
recursive function to mean a function

that doesn't use recursion at all or any
recursion is done via an abstract list
function such as foldr.

Thus we can give a non-recursive version of negate-list (thatis, foldr does all

the recursion).

(lambda (x rror) (cons (- x) rror))

(define (negate-list lst)
(foldr (lambda (x rror) (cons (- x) rror)) empty lst))

Because we generalized negate-list to map, we should be able to use foldr to
define map.

> my-map using foldr

Let’s look at the code for my-map.

(define (my-map f 1st)
(cond [(empty? 1lst) empty]
[else (cons (f (first lst))
(my-map f (rest 1st)))1))

empty is the base case

Clearly empty is the base value, and the combining function provided to foldr is
something involving cons and f.
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> my-map using foldr

In particular, the function provided to foldr must apply f to its first argument, then
cons the result onto its second argument (the reduced rest of the list).

(define (my-map f lst)
(foldr (lLambda (x rror) (cons (f Xx) rror)) empty lst))

We can also implement my-filter using foldr.

Anonymous functions Syntax Example Map Foldr 7 y Fold! Build-list
0000000000 000000000 00000000 000000000 000000000000000000800000 000000000 00000000
52/69 14: Functional Abstraction CS 135

my-filter using foldr
¢ One approach is to make this code match the structure of foldr so we can identify the values to
pass to foldr as the base and the combining function
(define (my-filter pred? lst)
(cond [(empty? lst) empty] my-filter does not look much

[(pred? (first 1st)) like the code for foldr yet
(cons (first lst) (my-filter pred? (rest 1lst)))]
[else (my-filter pred? (rest lst))]))

(define (my-foldr combine base lst)
(cond [(empty? lst) base]
[else (combine (first lst)
(my-foldr combine base (rest 1lst)))]))
¢ We start by moving the last two question/answer pairs into an else clause
(define (my-filter pred? lst)
{cond [(empty? lst) empty]
[else (cond [(pred? (first 1st))

{cons (first lst) (my-filter pred? (rest lst)))]
[else (my-filter pred? (rest 1st)})])]))

¢ Next, make the contents of the else clause into a function

(define (my-filter pred? 1lst)
(local [(define (maybe-cons x filtered)
{cond [{pred? x) (cons x filtered)]
[else filtered]))]
{cond [({empty? lst) empty]
[else (maybe-cons (first 1lst)
{my-filter pred? (rest 1st)}))]1)))

e The last three lines match foldr. We can now use foldr by passing empty to base and the
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function maybe-cons to the combining function
¢ We also see that maybe-cons is a function that is only used once and can therefore be
replaced with a lambda expression
(define (my-filter pred? lst)
(foldr (lambda (x filtered)
(cond [(pred? x) (cons x filtered)]
[else filtered]))
empty lst))

Summary: ALFs vs. the list template
e Anything that can be done with the list template can be done using foldr, without explicit
recursion (unless it ends the recursion early, like insert)
» Experienced Racket programmers still use the list template, for readability and maintainability

Abstract list functions should be used judiciously, to replace relatively simple uses
of recursion. J
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Foldl

Friday, November 20, 2020 22:27

Generalizing accumulative recursion

Let's look at several past functions that use recursion on a list with one
accumulator.

;3 code from lecture module 12

(define (sum-list 1lst0)
(local [(define (sum-list/acc lst sum-so-far)
(cond [(empty? 1st) sum-so-far]
[else (sum-list/acc (rest lst)

(+ (first 1st) sum-so-far))]))]
(sum-list/acc 1st0 0)))

(check-expect (sum-list '(1 2 3 4)) 10)

Anonymous functions Syntax Example

Map Foldr Foldi Buiid-fist
0000000000 000000000 00000000 000000000 000000000000000000000000 900000000 00000000
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> Generalizing accumulative recursion

Let’s look at several past functions that use recursion on a list with one
accumulator.

;3 code from lecture module 9 rewritten to use local

(define (rev-list 1st0)
(Local [(define (rev-list/acc lst lst-so-far)
(cond [(empty? lst) lst-so-far]
[else (rev-list/acc (rest 1lst)

(cons (first lst) lst-so-far))]))]
(rev-list/acc lst0 empty)))

(check-expect (rev-list '(1 23 45)) '(54321))

Anonymous functions Syntax Example Map

Foldr Fold! Build-list
0000C00000 000000000 00000000 000000000 Q0000000000000 0000000000 080000000 00000000
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foldl

e The differences between these two functions are
o the initial value of the accumulator
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o the computation of the new value of the accumulator, given the old value of the accumulator and
the first element of the list

> foldl

(define (my-foldl combine base 1st0)
(local [(define (foldl/acc lst acc)
(cond [(empty? lst) acc]
[else (foldl/acc (rest lst)

(combine (first 1st) acc))]))]
(foldl/acc lst@ base)))

(define (sum-list lon) (my-foldl + © lon))
(define (my-reverse 1lst) (my-foldl cons empty 1lst))

foldl is defined in the Intermediate Student language and above.

We noted earlier that intuitively, the effect of the application
(Toldr T b (Uist X1 ¥.2 :5: ¥.Nn))

is to compute the value of the expression
Ol F 22 (v (F 20D) o))

What is the intuitive effect of the following application of foldl?
(foldl £ b (list x.1 ... xn-1.x.n))

Tracing my-foldl
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(my-foldl £ @ (list 3 6 5))

=» (foldl/acc (list 3 6 5) @)

=» (foldl/acc (list 6 5) (f 3 8))

=» (foldl/acc (list 5) (f 6 (f 3 @)))

=» (foldl/acc (list ) (f 5 (f 6 (f 3 8))))
=» (f 5 (f 6 (f38))

« Intuitively, the effect of the application (foldl f b (list x_1 ... x_n-1 x_n)) is to compute the value of the
expression (f x_n (fx_n-1 (... (fx_1 b))))

> Tracing foldl
{foldl. b (list x 1 %2 .. Xn)) (F xenm (F xen=1 (o (F 31 b))))

(foldl string-append "2B" '("To" "be" "or" "not")) = "notorbeTo2B"

UTO" l‘be" llor” Hnot" I

“ 2 B " i |
string- string- string- string-
append append append append

—>
“To2B” "beTo2B” ‘“orbeTo2B” “notorbeTo2B”

Anonymous functions Syntax Example Map Foldr Foldl Build-list
0000000000 000000000 00000000 000000000 00000000000000000000C000 000008000 00000000
60/69 14: Functional Abstraction CS 135

 foldr and foldl may give the same or different results.

(foldr + @ "(1 2 3 4)) => 1@
(foldl + @ "(1 2 3 4)) => 1@

(foldr string-append "2B" '("To" "be"™ "or" "not"))
=» "Tobeornot2B”
(foldl string-append "2B" "("To"™ "be" "or" "not"))
=» "notorbeTo2B"

e In general, if the tcombining operation is commutative, foldr and foldl will generate the same result
e In these examples, + is commutative but string-append is not

foldl
e foldl is short for "fold left"
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e The reason for the name is that it can be viewed as "folding" a list using the provided function, starting
from the left-hand end of the list

(foldl + @ ‘(1 2 3 4 5))

e Contract: (XY ->Y) Y (listof X) ->Y
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Build-list

Friday, November 20, 2020 23:57

Deriving build-list
e Another useful built-in ALF is build-list.
e It consumes a natural number n and a function f, and produces the list
(list (f 0) (f 1) ... (f (subl n)))

e Examples:
(build-list 4 (lambda (x) X)) = (list 0 1 2 3)

(build-list 4 (lambda (x) (* 2 x))) = (list 0 2 4 6)
build-list abstracts the "count up" pattern, and it is easy to write our own version.

> my-build-list

(define (my-build-list n f)
(Local [(define (list-from i)
(cond [(>= i n) empty]
[else (cons (f i) (list-from (addl i)))]1))]
(List-from 0)))

Contract: Nat (Nat -> X) -> (listof X)

Anonymous functions Syntax Example Map Foldr
0000000000 000000000 00000000 000000000

64/69

Fold!
000000000000000000000000 000000000

14: Functional Abstraction
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> Visualizing build-list

(build-list 5 (lambda (x) (* 2 x)))

> Build-list examples

Yo (i)

foldr and build-list are both built-in, so

(define (sum n f) we do not trace them
(foldr + 0 (build-list n f)))

We split the summation into two parts,

(sum 4 sqr) each handled by an ALF

= (foldr + 0 (build-list 4 sqr)) _ _ _ _

= (foldr + 0 '(0 1 4 9)) The first part is a list qffapplled to
=14 each of the numbersin 0, 1, ..., n-1,

handled by build-list

The second part is summing them up,
handled by foldr.
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> Simplify mult-table

We can now simplify mult-table even further.

(define (mult-table nr nc)
(build-list nr
(lambda (r)
(build-list nc
(Lambda (c)
(x rc))))))
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Introduction

Sunday, November 22, 2020 20:13

Generative recursion
e Simple and accumulative recursion are ways to derive code whose form parallels a data definition

e In generative recursion, the recursive cases are generated based on the problem to be solved

* The non-recursive cases also do not follow the data definition
e |tis much harder to come up with such solutions to problem. And it often requires deeper analysis
and domain-specific knowledge

Example revisited: GCD
;3 (euclid-gcd n m) computes gcd(n,m) using Euclidean algorithm
;5 euclid-gcd: Nat Nat — Nat
(define (euclid-gcd n m)
(cond [(zero? m) n]
[else (euclid-gcd m (remainder n m))]))

e Why does this work?
e Correctness: Math 135 proof
e Termination: An application terminates if it can be reduced to a value in finite time
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Termination

Sunday, November 22, 2020 21:08

Termination of recursive function
e Why did our functions using simple recursion terminate?
» A simple recursive function always makes recursive applications on smaller instances, whose
size is bounded below by the base case (e.g. the empty list)
e We can thus bound the depth of recursion, the number of applications of the function before
arriving at a base case
e As aresult, the evaluation cannot go on forever

Depth of recursion example
(define (sum-list 1lst)
(cond [(empty? lst) 0]
[else (+ (first lst) (sum-list (rest 1st)))1]))

(sum-list (list 3 6 5 4)) - |
= (+ 3 (sum-list (list 6 5 4))) i 2
= (+ 3 (+ 6 (sum-list (list 5 4)))) iy 3
= (+3 (+ 6 (+ 5 (sum-list (list 4))))) ;1 4
= (+3 (+6 (+5 (+ 4 (sum-list (list )))))) -
= (+3 (+6 (+5(+40))))=...=18

rrived at base case

e The depth of recursion of any application of sum-list is equal to the length of the list to which it is
applied

Termination of euclid-gcd
 In the case of euclid-gcd, our measure of progress is the size of the second argument
e If the first argument is smaller than the argument, the first recursive application switches them,
which makes the second argument smaller
e After that, the second argument always gets smaller in the recursive application, but it is bounded
below by O
e Thus, any application of euclid-gcd has a depth of a recursion bounded by the second argument

Module 15 Generative Recursion Page 185



Quicksort

Sunday, November 22, 2020 21:09

Hoare's Quicksort
e The quicksort algorithm is an example of divide and conquer
o divide a problem into smaller subproblems
o recursively solve each one
o combine the solutions to solve the original problem
e Quicksort sorts a list of numbers into non-decreasing order by first choosing a pivot element from the list
e The subproblems consist of the elements less than the pivot, and those greater than the pivot

Pivot and subproblems
¢ The easiest pivot to select from a list lon is (first lon)
¢ A function which tests whether another item is less than the pivot is (lambda (x) (< x (first lon)))
e The first subproblem is then (filter (lambda (x) (< x (first lon))) lon)
« A similar expression will find the second subproblem (numbers greater than the pivot)

> my-quicksort

;3 (my-quicksort lon) sorts lon in non-decreasing order
(check-expect (my-quicksort '(5 3 9)) '(3 59))

;3 my-quicksort: (listof Num) — (listof Num)
(define (my-quicksort lon)
(cond [(empty? lon) empty]
[else (local [(define pivot (first lon))
(define less (filter (lambda (x) (< x pivot))
(rest lon)))
(define greater (filter (lambda (x) (>= x pivot))
(rest lon)))]
(append (my-quicksort less)
(list pivot)
(my-quicksort greater)))1))

Intro Termination Quicksort DRecipe Example
000 000000 0008000 . o 0000 00K
13/30 15: Generative Recursion CS 135

Quicksort termination

e Termination of quicksort follows from the fact that both subproblems have fewer elements than the
original list (since neither contains the pivot)

e Thus, the depth of reursion of an application of my-quicksort is bounded above by the number of
elements in the argument list

¢ This would not have been true if we had mistakenly written
(filter (lambda (x) (>= x pivot)) lon)
instead of the correct

(filter (lambda (x) (>= x pivot)) (rest lon))

Built-in quicksort
¢ The built-in function quicksort consumes two arguments, a list and a comparison function
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(quicksort '(1 524 3) <)="(12 3 4)5)
(quicksort '(15243) >)="'(54321)

(quicksort '("chili powder anise" "basil") string<?)
= (list "anise" "basil" "chili powder")
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Design recipe

Sunday, November 22, 2020 21:49

Modifying the design recipe

e The design recipe becomes much more vague when we move away from data-directed design

e The purpose statement remains unchanged, but additional documentation is often required to
describe how the function works

e Examples are needed to illustrate the workings of the algorithm

e We cannot apply a template since there is no data definition

e For divide and conquer algorithms, there are typically tests for the easy cases that do not require
recursion, followed by the formulation and recursive solution of subproblems, and then combination
of the solutions
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Example

Tuesday, November 24, 2020 14:31

Example: breaking strings into lines
e Computer character sets include not only alphanumeric characters and punctuation, but "control"
character as well
e Example in Racket: #\newline
¢ \n appearing in a string constant is interpreted as a single newline character
e The string "ab\ncd" is is a five-character string with a newline as the third character. It would typically
be printed as "ab" on one line and "cd" on the next line

Getting started
¢ Consider converting a string such as "one\ntwo\nthree" into a list of strings, (list "one" "two" "three"),
one for each line
e The solution will start with an application of string->list
» This problem can be solved using simple recursion on the resulting list of characters, but it will be hard
¢ |n this case the generative solution is easier

The generative idea
¢ Instead of thinking of the list of characters as a list of characters, think of it as a list of lines

ocnel\ntwolnthree

one \ntwol\lnthree

¢ Alist of lines is either empty or a line followed by a list of lines
o Start with helper functions that divide the list of characters into the first line and the rest of the lines

> Helper: first-line

;3 (first-line loc) produces longest newline-free prefix of loc

;; Examples:

(check-expect (first-line empty) empty)

(check-expect (first-line '(#\a #\newline)) '(#\a))

(check-expect (first-line (string->list "abc\ndef")) '(#\a #\b #\c))

13 first-line: (listof Char) — (listof Char)
(define (first-line loc)
(cond [(empty? loc) empty]
[(char=? (first loc) #\newline) empty]
[else (cons (first loc) (first-line (rest loc)))1))

Intro Termination Quicksort DRecipe Example
000 000000 OOOOOOO ) o] 000800000000000
21/30 15: Generative Recursion CS 135
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> Helper: rest-of-lines

;3 (rest-of-lines loc) produces loc with everything up to
s and including the first newline removed

;; Examples:

(check-expect (rest-of-lines empty) empty)

(check-expect (rest-of-lines '(#\a #\newline)) empty)
(check-expect (rest-of-lines '(#\a #\newline #\b)) '(#\b))

;; rest-of-lines: (listof Char) — (listof Char)
(define (rest-of-lines loc)
(cond [(empty? loc) empty]
[(char=? (first loc) #\newline) (rest loc)]
[else (rest-of-lines (rest loc))]))

> List of lines template

We can create a “list of lines template” using these helpers.

(define (loc->lol loc)
(local [(define fline (first-line loc))
(define rlines (rest-of-lines loc))]
(cond [(empty? loc) ...]
[else (... fline ... (loc->lol rlines) ...)1)))

Using local just to give names to the first line and the rest of the lines
The core of the template is the cond expression, which looks a lot like the
listof-X template

> loc->1lol

7+ loc->lol: (listof Char) — (listof Str)
(define (loc->1lol loc)
(local [(define fline (first-line loc))
(define rlines (rest-of-lines loc))]
{cond [(emntv? 10c) emntvl haca ~raca: whan lan ic amnhr nradiica an amnhi liet Af linae

Module 15 Generative Recursion Page 190



(local [(define fline (first-line loc))
(define rlines (rest-of-lines loc))]
(cond [(empty? loc) empty] base case: when loc is empty, produce an empty list of lines
[else (cons (list->string fline)

(loc->lol rlines))]))fline is a list of characters, so convert it to string
with list->string. Then cons it on to (loc->rlines)

_ _ ) (loc->lol rlines) produces a list of strings, each one
;3 string->lines: Str -> (listof Str) corresponding to a line

(define (string->lines s) (loc->lol (string->list s)))

loc->1ol looks a lot like the template for functions consuming a (listof X). That
was simple recursion. Is this also simple recursion?

o : : Because the argument rlines to loc->lol
No, this is not simple recursion. Why not? ;. many steps closer to the base case

Intro Termination Quicksort DRecipe Example
000 000C00 0000000 o 000000800000000
24/30 15: Generative Recursion CS 135

Generative recursion
e Why is this generative recursion?
e |oc->lol can be rewritten as

(define (loc->lol loc)
(cond [(empty? loc) empty]
[else (cons (list->string (first-line loc))
(Lloc->1ol (rest-of-lines loc)))]))

e The recursive call to loc->lol is not using the data definition for a list of characters

e |t often gets many steps closer to the base case in one recursive application

e Itis using a data definition of a "list of lines", but there is a higher-level abstraction that we imposed on
top of the (listof Char), the actual argument

» The key part of the generative recursion pattern is that the argument to loc->lol is being generated by
rest-of-lines

¢ When we use generative recursion, we need to be careful about termination

» Why does string-> lines always terminate?

e Each recursive call is applied to (rest-of-lines loc) where loc is non-empty, but rest-of-lines produces
either empty (which leads directly to termination in loc->lol) or a list of characters that is at least one
character shorter

e Therefore, the length of the argument to loc->lol is always decreasing until it becomes empty and the
function terminates
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> Using simple recursion

;3 list->lines: (listof Char) -> (listof (listof Char))
(define (list->lines loc)
(cond
[(empty? loc) (list empty)]
[(and (empty? (rest loc)) (char=? #\newline (first loc)))
(list empty)]
[else
(local [(define r (list->lines (rest loc)))]
(cond
[(char=? #\newline (first loc)) (cons empty r)]
[else (cons (cons (first loc) (first r)) (rest r))1))1))

(define (string->lines str)
(map list->string (list->lines (string->list str))))
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Intro

Thursday, November 26, 2020 22:43

Directed graphs

e Adirected graph consists of a collection of nodes (also called vertices) together with a collection
of edges

e An edge is an ordered pair of nodes, which we can represent by an arrow form one node to
another

e In adirected graph, each edge has a direction (indicated by the head of each arrow)
e In an undirected graph, edges do not have directions

e Evolution trees and expression trees were both directed graphs of a special type where an edge
represented a parent-child relationship

C F

Graph terminology
e Given an edge (v,w), we say that w is an out-neighbour of v, and v is an in-neighbour of w

e A sequence of nodes vi, V2, ..., Vk is a path or route of length k-1 if (v1, v2), (V2, V3), ..., (Vk-1, Vk) are
all edges

e If vi = v, thisis called a cycle
e Directed graphs without cycles are called DAGs (directed acyclic graphs)
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Representation

Thursday, November 26, 2020 23:00

Representing graphs
e We can represent a node by a symbol (its name), and associate with each node a list of its out-
neighbours
e This is called the adjacency list representation
e More specifically, a graph is a list of pairs, each pair consisting of a symbol (the node's name) and
a list of symbols (the names of the node's out-neighbours)
e This is very similar to a parent node with a list of children

> Our example as data

(define ¢
“((A (CDE))

(B (E J))
(C ())
(D (F J))
(E (K))
(F (K H))
(H ())
(3 (H))
(K ()))

Intro Representation Paths v1 Termination Paths v2 Paths v3
000 0800000 00000000000000 000 000000000 0000000000

6/45 16: Graphs CS 135
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> Data definitions

To make our contracts more descriptive, we will define a Node and a Graph as
follows:

;7 A Node is a Sym

;; A Graph is one of:

yi * empty

;3 * (cons (list v (list w_1 ... w_n)) @g)

;3 where g is a Graph

3 v, w1, ... w_n are Nodes

is v is the in-neighbour to w_1 ... w_n in the Graph
5 v does not appear as an in-neighbour in g

A Graph is a (listof X) where X is a two element list (a pair)
Each pair contains a node name (a symbol), and a list of out-neighbours (a list of symbols)
The order of the pairs does not matter. The order of the list of symbols does not matter.
The order of the node and its associated out-neighbours in a pair does matter

We often put the list of nodes in alphabetical order

Make sure that each node, v, is only listed once in the list of nodes

> The template for graphs

;3 graph-template: Graph — Any
(define (graph-template g)

(cond
[(empty? g) ...]
[(cons? q)
(... (First (first g)) ; first node in graph list
. (listof-node-template
(second (first g))) ; list of adjacent nodes

. (graph-template (rest g)) ...)1))

Module 16 Graphs Page 195



> neighbours

We can use the graph template to write a function that produces the
out-neighbours of a node. We'll need this function in just a moment.

;3 (neighbours v g) produces list of neighbours of v in g

;; Examples: . .
(check-expect (neighbours 'D g) '(F J))

(check-error (neighbours 'Z g) "Node not found")

;3 neighbours: Node Graph — (listof Node) B .

;i requires: v is amnode in g g coge assumes that the provided node is in the graph

(define (neighbours v g) P grap
(cond

It produces an error if the requirement fails
[(empty? g) (error "Node not found")]

[(symbol=? v (first (first g))) (second (first g))]
[else (neighbours v (rest g))]))
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Paths v1

Thursday, November 26, 2020 23:37

Finding paths
e A path in a graph can be represented by an ordered list of the nodes on the path
e We wish to design a function find-path that consumes a graph plus origin and destination nodes, and

produces a path from the origin to the destination, or false if no such path exists
c F

A D

(find-path 'A 'Hg) = '"(AD FH) or '(AD JH)
(find-path 'D 'H g) = '(D F H) or '(D J H)
(find-path 'C 'H g) = false

(find-path 'A 'A g) = '(A)

Cases for find-path
e Simple recursion does not work for find-path. We must use generative recursion
« If the origin equals the destination, the path consists of just this node
e Otherwise, if there is a path, the second node on that path must be an out-neighbour of the origin node
e Each out-neighbour defines a subproblem (finding a path from it to the destination)

Building a path from a solved sub-problem
e In our example, any path from A to H must pass through C, D or E
e |f we knew a path form C to H, from D to H, or from E to H, we could create one from A to H

C 3

Backtracking algorithms
e Backtracking algorithms try to find a path from an origin to a destination
e If the initial attempt does not work, such an algorithm "backtracks" and tries another choice
e Eventually, either a path is found, or all possibilities are exhausted, meaning there is no path
e Recall: search-bt-path-v1 searches for a path in the left side of a binary tree. If it there is no path, it
"backtracks" and searches the right side of the binary tree
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Backtracking in this example
* In this example, we can see the "backtracking" since the search for a path from A to H can be seen as
moving forward in the graph looking for H
* |f this search fails (for example, at C), then the algorithm "backs up" to the previous node and tries the
next neighbour
e If we find a path from D to H, we can just cons A to the beginning of this path

c F
A D

Exploring the list of out-neighbours
* We need to apply find-path on each of the out-neighbours of a given node
¢ The neighbours function gives us a list of all the out-neighbours associated with that node
e This suggests writing find-path/list which consumes a list of nodes and will apply find-path to each one
until it either finds a path to the destination or exhausts the list

Mutual recursion
e This is the same recursive patter that we saw in the process of expression trees and evolutionary trees

e For expression trees, we had two mutually recursive functions, eval and apply
e Here, we have two mutually recursive functions, find-path and find-path/list

> find-path

;3 (find-path orig dest g) finds path from orig to dest in g if it exists
;; find-path: Node Node Graph — (anyof (listof Node) false)
(define (find-path orig dest g)

(cond [(symbol=? orig dest) (list dest)]

[else (local [(define nbrs (neighbours orig g))
(define ?path (find-path/list nbrs dest g))]
(cond [(false? ?path) false]
[else (cons orig ?path)]))]))

We're using ?path to mean it might hold a path or it might not.

Intro Representation Paths v1 Termination Paths v2 Paths v3
000 0000000 ! 1000000 000 000000000 0000000000
17/45 16: Graphs CS 135
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> find-path/list

(find-path/list nbrs dest g) produces a path from
R an element of nbrs to dest in g, if one exists
;5 find-path/list: (listof Node) Node Graph — (anyof (listof Node) false)
(define (find-path/list nbrs dest g)
(cond [(empty? nbrs) false]
[else (local [(define ?path (find-path (first nbrs) dest g))]
(cond [(false? ?path)
(find-path/list (rest nbrs) dest g)]
[else ?path]))]))

r

Intro Representation Paths v1 Termination Paths v2 Paths v3
000 0000000 00000000800000 000 000000000 0000000000

18/45 16: Graphs CS 135
> Tracing (find-path 'A 'B g) (1/2)

If we wish to trace find-path, trying to do a linear trace would be very long, both in
terms of steps and the size of each step. Our traces also are listed as a linear
sequence of steps, but the computation in find-path is better visualized as a tree.

We will use an alternate visualization of the potential computation (which could be
shortened if a path is found).

The next slide contains the trace tree. We have omitted the arguments dest and g
which never change.

Intro Representation Paths v1 Termination Paths v2 Paths v3
000 0000000 0000000000000 000 000000000 0000000000
19/45 16: Graphs CS 135
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» Tracing (find-path 'A 'B g) (2/2)

(find-path 'A)
(find-path/list\ C DE)

(find-path 'C) (find-path 'D) (find-path 'E)
(find-path/list empty:/jind-path/li\st '(F J)) (find-pati/list (K))
(find-path 'F) (find-path 'J) (find-path 'K)
(find-path/list '(K H)) (find-path/list '(H)NTCI-DEI’IWHSt empty)
(find-path 'K) (find-path 'H) (find-path 'H)
(find-path/list empty) (find-path/list empty) (find-path/list empty)
Intro Representation szs v Termination Paths v2 Paths v3
20/45 16: Graphs CS 135

Termination of find-path (no cycles)
In a directed acyclic graph, any path with a given origin will recurse on its (finite number) of neighbours

by way of find-path/list
e The origin will never appear in this call or any subsequent calls to find-path. If it did, we would have a

cycle in our DAG
e Thus, the origin will never be explored in any later call, and thus the subproblem is smaller

e Eventually, we will reach a subproblem of size 0 (when all reachable nodes are treated as the origin)
e Thus find-path always terminates for directed acyclic graphs

Non-termination of find-path (cycles)
e |tis possible that find-path may not terminate if there is a cycle in the graph

B (A (B))
(B (C))
A oD (C (A))
® ))
&

(find-path 'A)
B (find-pati/list '(B))
A/ ® D (find-path 'B)
\ (find-path/list '(C))
c v

(find-path 'C)
(find-path/list '(A))
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(find-path 'A)
(find-path/list '(B))

(find-path 'B)
(find-path/list '(C))

(find-path 'C)
(find-path/list '(A))

(find-path 'A)
(find-path/list '(B))



Paths v2

Monday, November 30, 2020 17:32

Paths v2: Handling cycles

¢ We can use accumulative recursion to solve the problem of find-path possibly not terminating if there are cycles in the
graph

¢ To make backtracking work in the presence of cycles, we need a way of remembering what nodes have been visited
e Our accumulator will be a list of visited nodes

e The simplest way to do this is to add a check in find-path/list

> find-path/list

;3 find-path/list: (listof Node) Node Graph (listof Node) —

e : . Thenew parameter accumulates the nodes
s (anyof (listof Node) false) that have been visited so far

(define (find-path/list nbrs dest g visited)
(cond [(empty? nbrs) false] If find-path/list comes to a neighoburing node

’ .. that has already been visited, we skip it and
[(member? (first nbrs) visited) go on to the next neighbour on the list
(find-path/list (rest nbrs) dest g visited)]
[else (local [(define path (find-path/acc (first nbrs)

dest g visited))]

(cond [(false? path)

(find-path/list (rest nbrs) dest g visited)]
[else path]))]))

find-path/list's accumulator
¢ The code for find-path/list does not add anything to the accumulator, but it uses the accumulator

¢ Adding to the accumulator is done in find-path/acc which applies find-path/list to the list of neighbours of some origin
node

e That origin node must be added to the accumulator passed as an argument to find-path/list
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> find-path/acc

;3 find-path/acc: Node Node Graph (listof Node) —

i (anyof (listof Node) false) .
. . . A A h
(define (find-path/acc orig dest g visited) dded the visited parameter to

accumulate the nodes visited so far
(cond [(symbol=? orig dest) (list dest)]

[else (local [(define nbrs (neighbours orig g))
(define path (find-path/list nbrs dest g

(cons orig visited)))]

(cond [(false? path) false]

) Updating the accumulator by
[else (cons orig path)]))])) adding the current origin and

passing it to find-path/list

This is a generative recursion that happens to also use an accumulator
(define (find-path orig dest g)

(find-path/acc orig dest g '()))

;; new wrapper function
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> Tracing our examples (2/4)

(find-path/acc 'A empty)

(find-pathflist '(C D E) '(A))
- T (find-path/acc E '(A))

(find-path/acc 'C '(A)) find-path/list '(K) '(E A
(find-path/listempty (C A) (find-path/acc 'D '(A) {finc:pettsr R (EA)

(find-path/list '(F J) (D A))
/ ¥ (find-path/acc 'K (E A))
(find-path/acc 'J '(D A)) (find-path/list empty '(K E A))

(find-path/acc 'F (D A))  (find-path/list'(H) '(J D A))
(find-path/list (K H) '(F D A)) - (find-path/acc 'H '(J D A))
(find-path/list empty '(H J D A))

(find-path/acc 'K '(F D A)) (find-path/acc 'H '(F D A))
(find-path/list empty (K F D A))  (find-path/list empty '(H F D A))
Note that the value of the accumulator in find-path/list is always the reverse of
the path from A to the current origin (first argument).

Intro Representation Paths v1 Termination Paths v2 Paths v3
000 0000000 0000000000000 000 000008000 0000000000
32/45 16: Graphs CS 135

¢ This example has no cycles, so the trace convinces us that we have not broken the function on acyclic graphs

¢ It also works on graphs with cycles
¢ The accumulator ensures that the depth of recursion is no greater than the number of nodes in the graph, so find-path

terminates

> Tracing our examples (4/4)
(find-path/acc 'A empty)
B (find-path-list '(B) '(A))
A / oD *
\ (find-path/acc 'B '(A))
C (flnd-path-llit (C) (B A))

(find-path/acc 'C '(B A))
(find-path-list '(A) '(C B A))

no further calls to find-path/acc

Intro Representation Paths v1 Termination Paths v2 Paths v3
000 0000000 00000000000000 000 000000080 0000000000
34/45 16: Graphs CS 135

Cycle is solved, but...
¢ Backtracking now works on graphs with cycles, but it can be inefficient, even if the graph has no cycles

« If there is no path from the origin to the destination, then find-path will explore every path from the origin, and there
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could be an exponential number of them
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Paths v3

Tuesday, December 1, 2020 15:03

Paths v3: Efficiency

¢ If there is no path from the origin to the destination, then find-path will explore every path from the origin, and
there could be an exponentail number of them

1a 2a o7

B3 .. My

”
1b 2b

« |f there are d diamonds, then tehre are 3d+2 nodes in the graph, but 29 paths from D1 to Y, all of which will be
explored

Understanding the problem (1/2)
¢ Applying find-path/acc to origin D1 results in find-lath/list being applied to ‘(D1a D1b), and then find-path/acc
being applied to origin D1a
¢ There is no path from Dla to Z, so this will eventually produce false, but in the process, it will visit all the other
nodes of the graph except D1b and Z

¢ find-path/Isit will then apply find-path/acc to D1b, which will visit all the same nodes again

¢ We added an acucmulator to keep track of all the nodes we have visted and not revisit any tahat are on the
list. However, the accumulator is forgetful when find-path backtracks

Understanding the problem (2/2)

¢ When find-path/list is applied to the list of nodes nbrs, it first applies find-path/acc to (first nbrs) and then, if that
fails, it applies itself to (rest nbrs)

¢ To avoid revisiting nodes, the failed computation should pass the list of nodes it has seen on to the next
computation

« It will do this by returning the list of visited nodes instead of false when it fails to find a path
¢ However, we must be able to distinguish this list from a successfully found path, which is also a list of nodes

Remembering what the list of nodes represents
¢ We will encapsulate each kind of list in its own structure

¢ We can then easily use the structure predicates to check whether the list of nodes represents a path (success)
or visited nodes (failure)

(define-struct success (path))
i A Success is a (make-success (listof Node))

(define-struct failure (visited))
;7 A Failure is a (make-failure (listof Node))

;; A Result is (anyof Success Failure)
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> find-path/list

;3 find-path/list: (listof Node) Node Graph (listof Node) — Result
(define (find-path/list nbrs dest g visited)

(cond [(empty? nbrs) (make-failure visited)]
[ (member? (first nbrs) visited)
(find-path/list (rest nbrs) dest g visited)]
[else (local [(define result (find-path/acc (first nbrs)

dest g visited))]
(cond [(failure? result)

(find-path/list (rest nbrs) dest g

(failure-visited result))]
[(success? result) result]))]))

?path is renamed result for clarity.

> find-path/acc

;3 find-path/acc: Node Node Graph (listof Node) — Result
(define (find-path/acc orig dest g visited)

(cond [(symbol=? orig dest) (make-success (list dest))]
[else (local [(define nbrs (neighbours orig g))

(define result (find-path/list nbrs dest g
(cons orig visited)))]

(cond [(failure? result) result]
[ (success? result)

(make-success (cons orig

(success-path result)))]))1))

?path is renamed result for clarity.
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> find-path

;3 find-path: Node Node Graph — (anyof (listof Node) false)
(define (find-path orig dest g)
(local [(define result (find-path/acc orig dest g empty))]
(cond [(success? result) (success-path result)]

[(failure? result) falsel])))
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