
CS 240 Module 2 Summary

Angel Zhang

Winter 2022

Heap Properties

• Structural Property

– All levels are completely filled, except (possibly) for the last level

– The filled items in the last level are left-justified

• Heap-order Property

– For any node i, the key of the parent of i is larger than or equal to key of i

– The maximum is at the root

– The properties above are for a max-oriented binary heap

– Min-oriented binary heap also exists

• Height is Θ(log n)

Heap Operations

• Insert

– Place the new key at the first free leaf (after last element of array)

– Fix-up if necessary

• DeleteMax

– The maximum is the root

– Swap the root with the last leaf and delete the last leaf

– Fix-down if necessary

Heap Runtime

• Insert: O(log n)

• DeleteMax: O(log n)

• FindMax: O(1)

• Heapify: Θ(n)

• HeapSort: O(n log n)

1

CS 240 Module 3 Summary

Angel Zhang

Winter 2022

QuickSelect

Runtime

• Best case

– First chosen pivot has pivot index k

– Total cost from partition is Θ(n)

– No recursive calls

• Worst case

– Search range decreases by 1 each time

– Θ(n2)

• Expected

– Θ(n)

– Generally the fastest implementation of a selection algorithm

QuickSort

Main Idea

• Choose pivot and partition

• Recursively sort the left part and the right part

Runtime

• Worst case: O(n2)

• Expected: O(n log n)

• Average: O(n log n)

1

BucketSort

Main Idea

• Suppose all keys in A are integers in range [0, . . . , L− 1]

• Use an auxillary bucket array B[0, . . . , L− 1] to sort

• Iterate through B and copy non-empty buckets to A

• Time: Θ(n)

Analysis

• Time: Θ(L+ n)

• Space: Θ(L+ n)

MSD-Radix-Sort

Main Idea

• Sort multi-digit numbers from the most significant digit to the least significant digit

• Sort by the first digit

• Break down in groups by the first digit

• Recursively sort the rest of the digits

• Sort is not stable

Analysis

• Space: Θ(n+R +m)

• Time: O(mnR)

– O(n) if the items are in limited range

LSD-Radix-Sort

Main Idea

• Apply single digit bucket sort from the least significant digit to the most significant digit

• Sort is stable

Analysis

• Time: Θ(m(n+R))

• Space: Θ(n+R)

2

CS 240 Module 4 Summary

Angel Zhang

Winter 2022

AVL Properties

• Height-balance property: The heights of the left and right subtree differ by at most 1

– the height of an empty tree is defined to be −1

• If node v has left subtree L and right subtree R, then

balance(v) = height(R)− height(L) ∈ {−1, 0, 1}

• An AVL tree with n nodes has Θ(log n) height

AVL Operations

• Insert

– Insert KVP with the usual BST insertion and update height

– Restructure if necessary (at most once)

• Delete

– Delete KVP with the usual BST deletion and update height

– Restructure if necessary (may need to keep rebalancing up to the root)

AVL Runtime

• Search: Θ(height)

• Insert: Θ(height)

– Restructure restores the height of the subtree to what it was

– Restructure at most once

• Delete: Θ(height)

– Restructure may be called Θ(height) times (all the way up to the root)

– Restructure takes constant time so the total cost is still Θ(height)

• Worst-case cost for all operations is Θ(height) = Θ(log n)

1

CS 240 Module 5 Summary

Angel Zhang

Winter 2022

Skip List Properties

• A hierarchy S of ordered linked list S0, S1, . . . , Sh

• Special keys −∞ and +∞ (sentinels)

• List S0 contains the KVPs of S in non-decreasing order

• The other lists store only keys, or links to nodes in S0

• List Sh contains only the sentinels

• The root is the left sentinel in Sh

• Usually has more nodes than keys

Skip List Randomization

• Repeatedly toss a coin until we get a tail

• If i is the number of heads, then i will be the height of tower of k

• P (tower of k has height ≥ i) = 1
2i

Skip List Analysis

• Expected space: O(n)

• Expected height: O(log n)

• Search: O(log n) expected time

• Insert: O(log n) expected time

• Delete: O(log n) expected time

1

CS 240 Module 6 Summary

Angel Zhang

Winter 2022

Interpolation Search

• Works well if keys are uniformly distributed

• Recurrence relation is T avg(n) = T avg(
√
n) + Θ(1)

• Resolves to T avg(n) ∈ Θ(log log n)

• Worst case is however Θ(n)

– Occurs when the keys are not uniformly distributed

• Trick

– Use interpolation search for log n steps

– If key is still not found, switch to binary search

– Worst case O(log n), but could be Θ(log log n)

Trie

Overview

• A dictionary for bit strings

• Let |x| be the length of a string x

• Search, insert and delete all take O(|x|) time

• Efficient for prefix search

Variation 1: No Leaf Labels

• Do not store actual keys at the leaves since they are stored implicitly along the path to

the leaf

• Halves the amount of space

Variation 2: Allow Proper Prefixes

• Allow prefixes

• Internal nodes may now also represent keys, use a flag to indicate such nodes

• Remove $ children and replace them with flags

• More space efficient

1

Variation 3: Pruned Trie

• Stop adding nodes to trie as soon as the key is unique

• Save space if there are only a few long bitstrings

• Strings need to be stored at leaves

• Most efficient variation in practice

Compressed Tries

Overview

• Each internal node stores an index - next bit to be tested during a search

• Each internal node has at least 2 children

– n leaf nodes (keys) means at most n− 1 internal nodes

– At most 2n− 1 nodes

– Total space is Θ(n)

• When searching, need to explicitly check whether the string stored at the leaf is x

• All operations are O(|x|)

Multiway Tries

Overview

• Represents strings over any fixed alphabet |Σ|

• Each node has at most |Σ|+ 1 children

• Inlcudes one child for the end-of-word character $

Children Storage

• Solution 1: Array of size |Σ|+ 1 for each node

– O(1) to time search child, O(|Σ|n) space

• Solution 2: List of children for each node

– O(|Σ|) to time search child, O(n) space

• Solution 3: AVL-tree of children for each node

– O(log |Σ|) time to search child, O(n) space

– Best in theory, but not worth it in practice unless |Σ| is very large

2

CS 240 Module 7 Summary

Angel Zhang

Winter 2022

Direct Addressing

• Special situation: any dictionary key k is integer with 0 ≤ k < M

• All operations are O(1)

• Total storage is Θ(M)

• Drawbacks:

– Space is wasteful if n << M

– Keys must be integers

Hashing with Chaining

Worse Case

• In the worst case, all n items hash to the same array index.

– Insert : O(1)

– Search: Θ(n)

– Delete: Θ(n)

Runtime

• The Load factor is defined as

α =
n

M

where n is the number of items and M is the size of hash table

• α is the average bucket size

– Insert : Θ(1)

– Search and Delete: Θ(1 + size of bucket T [h(k)])

– Average runtime is NOT Θ(1 + α)

• Under uniform hashing assumption, the expected size of bucket T [h(k)] is at most 1 + α.

– Expected runtime of Insert is Θ(1 + α).

– Expected runtime of Search and Delete is Θ(1 + α).

– Space is Θ(M + n) = Θ(n/α + n)

1

Rehashing

• Keep a minimum and a maximum allowed load factor 0 < c1 < c2

• Rehash whenever α < c1 (use smaller M) or α > c2 (user larger M).

• Runtime is Θ(M + n) but happens rarely

Linear Probing

• Entries tend to cluster into contiguous regions.

• Many probes for each Search, Insert and Delete

Double Hashing

• Double hashing with a good secondary hash function does not cause the bad clustering

produced by linear probing.

• Search, Insert, Delete work as in linear probing, but with a different probe sequence.

• Linear probing is a special case of double hashing with h2(k) = 1

Cuckoo Hashing

• Use independent hash functions h0, h1 and two tables T0, T1.

• An item with key k can only be at T0[h0(k)] or T1[h1(k)]

Operations

• Insert starts with T0 and alternates between T0 and T1, kicking out the current occupant

until no item is kicked out

• May lead to a loop of ”kicking out”, maximum 2n attempts

• Rehash with a larger M and new hash functions if Insert failed

Runtime

• Search and Delete: O(1)

• Insert may be slow, but expected constant time if the load factor is small

• Works well in practice

Notes

• The two hash tables do not have to be of the same size

• Load factor

α =
n

T0 + T1

2

Hashing vs. BSTs

Advantages of BSTs

• O(log n) worst-case operation cost

• Predictable space usage

• No need to rebuild the entire structure

• Ordered dictionary operations (rank, select, etc.)

Advantages of Hash Tables

• O(1) operations (if hashes well-spread and load factor small)

• Choose space-time trade off via load factor

• Cuckoo hashing achieves worst-case O(1) for Search and Delete.

3

CS 240 Module 8 Summary

Angel Zhang

Winter 2022

Quadtrees

Overview

• A set S of n points in the plane

• Bounding box R:

– Smallest square [0, 2k]× [0, 2k] containing all points

– Find R by compute the maximum x and y values in S

– The side length is a power of 2

Range Search

• Query rectangle A

• R is the region associated with current node, 3 cases

– R does not intersect A ⇒ red node, do not search its children

– R is fully contained in A ⇒ green node, report all points inside R

– R intersects A but is not contained in A ⇒ blue node, recursively search its children

– If R is a leaf and stores a point inside A, then report it

Runtime

• The spread factor is defined as

β(S) =
L

dmin

where L is the side length of R and dmin is the smallest distance between two points in S.

• In the worst case, height h ∈ Ω(log β(S))

• In all cases, height h ∈ O(log β(S))

• Construction: Θ(nh) worst case

• RangeSearch: Θ(nh) worst case even if the search result is empty

– Worse than exhaustive search

– In practice usually much faster

1

Summary

• Easy to generalize to higher dimensions (octrees, etc)

• Easy to compute

• Simple arithmetic: division by 2 each time (bit shift)

• Space potentially wasteful, but good if points are well-distributed

kd-Tree

Range Search

• Similar to quadtree range search

• Query rectangle A

• R is the region associated with current node, 3 cases

– R does not intersect A ⇒ red node, do not search its children

– R is fully contained in A ⇒ green node, report all points inside R

– R intersects A but is not contained in A ⇒ blue node, recursively search its children

– If R is a leaf and stores a point inside A, then report it

Runtime

• Construction: Θ(n log n)

• Height: O(log n)

• RangeSearch: O(s+
√
n)

Problems

• Do not handle insertion and deletion well

• After insert or delete, split might no longer be at exact median

• Height is no longer guaranteed to be O(log n)

Range Tree

Modified BST Range Search

• Search for k1 gives left boundary path P1

• Search for k2 gives right boundary path P2

• Find topmost inside nodes

– not in P1 or P2

– left children of nodes in P2

2

– right children of nodes in P1

• Output nodes in the search range

– Check each node in P1 and P2 and report if in range

– Report all topmost inside nodes and nodes in their subtree

Modified BST Range Search Runtime

• Searching for P1 and P2 takes O(log n)

• Checking boundary nodes takes O(log n)

• O(log n) topmost inside nodes

• Total number of nodes in the subtrees of topmost inside nodes ≤ s

• Total time O(s+ log n)

Range Search in 2D Range Tree

• Perform modified BST Range Search on the primary BST using x-coordinates

• Find boundary and topmost inside nodes

• Check if boundary nodes have valid x-coordinate and y-coordinate

• For each topmost inside node, perform range search in associated y-BST using y-coordinates

– Find boundary and topmost inside nodes

– Check boundary nodes have valid x-coordinate and y-coordinate

– Report all nodes below topmost inside nodes

Analysis

• Suppose d is the dimension of the range tree

• RangeSearch: O(s+ logd n)

• Space: O(n(log n)d−1)

• Construction: O(n(log n)d−1)

Summary

Quadtree

• Height is Θ(log β(S))

• Range search is Θ(nh) worst case

• Simple, easy to implement insert and delete

• Works well only if points evenly distributed

• Wastes space if points not evenly distributed

3

kd-Tree

• Construction is Θ(n log n)

• Height is Θ(log n)

• Range search is O(s+
√
n)

• Space is O(n)

• Insert and delete cause imbalance and affects range search time and there is no simple fix

2D Range Tree

• Construction is O(n log n)

• Range search is O(s+ log2 n), fastest among three data structures

• Space is O(n log n)

• Waste some space

• Insert and delete cause imbalance but this can be fixed with occasional rebuilt

4

CS 240 Module 9 Summary

Angel Zhang

Winter 2022

Karp-Rabin

Main Idea

• Use hashing to eliminate guesses faster

• Compute hash function for each guess, compare with pattern hash

– If values are unequal, then the guess cannot be an occurrence

– If values are equal, verify that pattern actually matches text

Runtime

• Expected runtime is O(m+ n), assuming a good hash function - few collisions

• Worst case is Θ(mn) but is extremely unlikely.

Knuth-Morris-Pratt

Details

• Failure Array

– F [j] stores the length of the longest prefix of P [0 . . . j] that is a proper suffix of P (or

in other words, a suffix of P [1 . . . j])

– Construction takes Θ(m)

• Starting from the left, match P with T ,

• Let i be the index within T and j be the index within P .

– If match is successful, increment i and j (move forward)

– If match is unsuccessful at m, if j > 0, update j to be F [j − 1]. Otherwise update i

to be i+ 1

Runtime

• Construction of failure array: Θ(m)

• Main KMP function: Θ(n)

• Total runtime: Θ(m+ n)

1

Boyer-Moore

Main Idea

• Fastest matching on English Text

• Reverse-order searching

• When a mismatch occurs choose, the better option among

– Bad character heuristic

– Good suffix heuristic

Details

• Last occurrence array

– Last occurrence of character c in P

– Define L(c) = −1 if character c does not occur in P

– Bad character heuristic can only be used if L(c) < j

– Computation takes O(m+ |Σ|)

• Upon mismatch, update j ← m− 1

– If L(c) < j,

i→ i+ (m− 1)− L(c)

(align the last occurrence of character)

– If c does not occur in P ,

i→ i+m

(shift past T [i])

– If L(c) > j,

i→ i+ 1 + (m− 1)− j

(shift P by 1)

• Formula for i that works in all cases

i← i+m− 1−min{L(c), j − 1}

Summary

• Performs very well, even when using only bad character heuristic

• Worst case runtime is O(nm) with bad character heuristic only, but in practice much faster

• On typical English text, Boyer-Moore looks only at ≈ 25% of text T

2

Suffix Tree

Main Idea

• Search for many patterns P within the same fixed text T

• Preprocess the text T rather than pattern P

• Store all suffixes of T in a trie

– Compressed trie ⇒ O(n) space

– Store suffixes implicitly via indices into T

• P is a substring of T iff P is a prefix of some suffix of T

• When pattern searching, search for P in compressed trie

Runtime

• Construction: Θ(n2|Σ|)

• Pattern matching: Θ(m|Σ|)

Summary

• Theoretically good

• Construction is slow or complicated

• Wastes space

• Rarely used in practice

Suffix Arrays

Main Idea

• Store suffixes implicitly (use start indices)

• Store sorting permutation of the suffixes in T

• For pattern matching, apply binary search

Details

• Construction

– Write out the suffixes of T

– Sort lexicographically

– AS[j] = i such that T [i . . . n] is the suffix in this slot

– Easy to construct using MSD-Radix-Sort (pad with any character to get the same

length)

• Pattern matching

– Apply binary search

3

Runtime

• Construction:

– Worst case Θ(n2)

– Can achieve Θ(n log n)

• Pattern matching: Θ(m log n)

Summary

• Sacrifice some performance for simplicity

• Slightly slower (by a log-factor) than suffix trees

• Easier to build

• Less space

4

CS 240 Module 10 Summary

Angel Zhang

Winter 2022

Type of Data Compression

Logical vs. Physical

• Logical:

– Uses the meaning of the data

– Only applies to certain domains

• Physical:

– Only know physical bits in data

– Does not know their meaning

Lossy vs. Lossless

• Lossy Compression

– Achieves better compression ratios

– Decoding is approximate

– Exact source text S is not recoverable

• Lossless Compression

– Always decodes S exactly

Character Encoding

• Fixed-length code: All codewords have the same length

• Variable-length code: Codewords can have different lengths

Huffman Encoding

Algorithm

• Determine frequency of each character

• For each character c, create a trie containing c

• Find two tries with minimum weight

1

• Merge them with new internal node and new weight is the sum

• Repeat last two steps until there is only one trie

Properties

• The constructed trie is not unique

• Two passes (compute frequency and encode)

• Constructed trie is optimal

• Coded text is shortest among all prefix-free character encodings with ΣC = {0, 1}

• If the frequencies are almost equal, then the compression ratio would not be good.

Run-Length Encoding

Overview

• Variable-length

• Multi-character encoding

• Source and coded alphabet are both binary

• Decoding dictionary is unique

Elias Gamma Coding

• ⌊log k⌋ copies of 0, followed by

• binary representation of k (no leading 0)

Properties

• An all-0 string of length n would be compressed to 2⌊log n⌋+ 2 ∈ o(n) bits

• No compression until run-length ≥ 6

• Expansion when run-length equals to 2 or 4

Lempel-Ziv-Welch

Overview

• Start with dictionary D0, usually ASCII, which uses code numbers 0, . . . , 127

• Every step adds a multi-character string to the dictionary, using code numbers 128, 129, . . .

• Encoding:

– Current dictionary as a trie

– Parse trie to find longest prefix w already in dictionary

2

– Encode w with one number

– Add wK where K is the character that follows w already in dictionary

– Creates one child in the trie at the leaf where we stopped

• Encoded output:

– A list of numbers

– Usually converted to bit-string with fixed-width encoding using 12 bits

• Decoding:

– Build dictionary while reading the coded string

– One step behind

Summary

• Go through the string only once and do not need to see the whole string

• Compresses quite well on English text

bzip2

Overview

• Uses text transform

• Change input into a different text that is not necessarily shorter, but has other desirable

qualities

• Steps:

1. Burrows-Wheeler Transform: Repeated subtrings transform into long runs of

characters

2. Move-to-Front Transform: Long runs of characters transform into long runs of

zeros and skewed frequencies

3. Modified RLE: Long runs of zeroes mean shorter encoded text. Skewed frequencies

remain

4. Huffman Encoding: Compresses well since frequencies are skewed

Move-to-Front Transform

Overview

• Dictionary L is stored as an unsorted array or linked list

• After an element is accessed, move it to the front of the L

• Encode each character of S by its index in L

• After each encoding, update the L with MTF

3

Properties

• A character in S repeats k times ⇐⇒ C has a run of k − 1 zeroes

• C contains many small numbers and a few large ones.

• C has the same length as S, but better properties

Burrows-Wheeler Transform

Overview

• Permute the source text

• The coded text has the exact same letters, but in a different order

• Source and coded alphabets are the same

• If original text had frequently occurring substrings, then transformed text should have

many runs of the same character - more suitable for MTF

Details

• Assume that S ends with $

• A cyclic shift of S is the concatenation of S[i+ 1 . . . n− 1] and S[0 . . . i], for 0 ≤ i < n.

• The encoded text C consists of the last characters of the cyclic shifts of S after sorting

them

Encoding

• Write all consecutive cyclic shifts

• Sort cyclic shifts lexicographically

– $ is lexicographically smaller than other characters

• Extract last characters from sorted shifts, i.e. last column

• Runtime

– For sorting, letters after $ do not matter

– Same as sorting suffixes of the soure text, use MSD-Radix-Sort

– O(n log n) for sorting

– Read coded text from suffix array in O(n) time

4

Decoding

• Given C, the last column of sorted shifts array

• Number the rows for the last column (from 0 to m− 1)

• Reconstruct the first column by sorting C

• Number the rows for the first column (equal characters stay in the same order)

• Recover source text, starting from the $ in the last column to recover S[0]

• Shift S[0] back and repeat the process

Summary

• Encoding

– O(n log n) with special sorting algorithm

– MSD is good in practice but worst case is Θ(n2)

– Read encoding from the suffix array

• Decoding

– O(n+ |ΣS|)
– Faster than encoding

• Encoding and decoding both use O(n) space

• Tends to be slower than other methods

• Combined with MTF, modified RLE and Huffman leads to better compression

5

CS 240 Module 11 Summary

Angel Zhang

Winter 2022

Sorting in External Memory

• HeapSort

– Poor memory locality

– Access indices that are far apart (children’s indices doubled from parent’s indices’s)

– Typically one block transfer per array access

– Does not adapt well to external memory model

• MergeSort

– Access consecutive locations

– Can read in blocks

– Ideal for external memory model

MergeSort in External Memory

• n
B
block transfers for input streams and n

B
for output stream, total 2n

B

• log2 n rounds

• Total number of block transfers is

2n

B
· log2 n ∈ Θ

(n

B
log n

)
d-way Merge Runtime

• Internal:

– Priority queue P with size d, implemented with a min-heap

– One insert() and deleteMin() for each item

– Total cost is Θ(n log d)

• External:

– Assuming d+ 1 blocks and P fits into memory

– 2n
B

∈ Θ(n
B
) block transfers

1

d-way MergeSort Runtime

• Internal:

– logd rounds of merging

– Each round takes Θ(n log2 d)

– Total cost is

Θ(logd n · n log2 d) = Θ

(
log2 n

log2 d
· n log2 d

)
= Θ(n log n)

– In internal memory, d-way MergeSort has the same running time theoretically

– In practice d-way is slower for maintaining a heap

• External with no improvement:

– logd n rounds of merging

– Each round takes Θ(n
B
) block transfers

– Total cost is Θ(n
B
· logd n)

• External with improvement:

– Sorting n
M

sorted runs

– logd
n
M

rounds of merging

– Each round takes Θ(n
B
) block transfers

– Total number of block transfers is

Θ
(n

B
· logd

n

M

)
= Θ

(n

B
· logM/B

n

M

)
since d ≈ M

B
− 1

– This is also a lower bound in external memory model for comparison-based sorting

2-4 Trees

Properties

• Every node is either

– 1-node: one KVP and two subtrees

– 2-node: two KVP and three subtrees

– 3-node: three KVP and four subtrees

• The keys at a node are between the keys in the subtrees.

• All empty subtrees are at the same level (important to ensure small height)

• Height is O(log n)

2

Operations

• Insert

– Overflow resolved by node splitting

– Take the middle key (the right key if there are two middle keys) and move it up a

level, then split the keys on two sides

– Might need to split until reaching the root

• Delete

– Underflow resolved by rotate/transfer or merge

– If a rich immediate sibling exists, then rotate/transfer (similar to an AVL tree)

– Otherwise merge (bring parent node down)

a-b Trees

Properties

• Each node has at least a subtrees, unless it is the root

• Each node has at most b subtrees

• The root has at least 2 subtrees

• A node has d subtrees ⇐⇒ it stores d− 1 KVPs

• Empty subtrees are at the same level

• The keys in the node are between the keys in the corresponding subtrees

• Requirement: a ≤
⌈
b
2

⌉
• Smallest number of KVP: 1 + 2ah

• Height: O(loga n) = O(log n/ log a)

Operations

• Insert

– Overflow resolved by node splitting

– Take the middle key (the right key if there are two middle keys) and move it up a

level, then split the keys on two sides

• Delete

– Underflow resolved by rotate/transfer or merge

– If a rich immediate sibling exists, then rotate/transfer (similar to an AVL tree)

– Otherwise merge (bring parent node down)

3

Runtime

• Height is O(log n/ log a)

• Choose a = ⌈b/2⌉ to minimize the height

• Work at node can be done in O(log b) time

• Total cost: O(log n)

B-Tree

Properties

• An a-b tree tailored to the external memory model

• Every node is one block of memory (of size B)

• b is chosen maximally such that a node with b− 1 KVPs fits into a block of memory

• b is called the order of the B tree. Typically b ∈ Θ(B)

• a is set to ⌈b/2⌉ to minimize height

Runtime

• All operations require visiting Θ(height) nodes

• Work within a node is done in the internal memory so no block transfer

• The height is Θ(loga n) = Θ(logB n)

• Therefore all operations require Θ(logB n) block transfers

4

