CS 240 Module 2 Summary

Angel Zhang

Winter 2022

Heap Properties

- Structural Property
 - All levels are completely filled, except (possibly) for the last level
 - The filled items in the last level are left-justified
- Heap-order Property
 - For any node i, the key of the parent of i is larger than or equal to key of i
 - The maximum is at the root
 - The properties above are for a max-oriented binary heap
 - Min-oriented binary heap also exists
- Height is $\Theta(\log n)$

Heap Operations

- Insert
 - Place the new key at the first free leaf (after last element of array)
 - Fix-up if necessary
- DeleteMax
 - The maximum is the root
 - Swap the root with the last leaf and delete the last leaf
 - Fix-down if necessary

Heap Runtime

- Insert: $O(\log n)$
- DeleteMax: $O(\log n)$
- FindMax: O(1)
- Heapify: $\Theta(n)$
- HeapSort: $O(n \log n)$

CS 240 Module 3 Summary

Angel Zhang

Winter 2022

QuickSelect

Runtime

- Best case
 - First chosen pivot has pivot index k
 - Total cost from partition is $\Theta(n)$
 - No recursive calls
- Worst case
 - Search range decreases by 1 each time
 - $-\Theta(n^2)$
- Expected
 - $-\Theta(n)$
 - Generally the fastest implementation of a selection algorithm

QuickSort

Main Idea

- Choose pivot and partition
- Recursively sort the left part and the right part

Runtime

- Worst case: $O(n^2)$
- Expected: $O(n \log n)$
- Average: $O(n \log n)$

BucketSort

Main Idea

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an auxillary bucket array B[0, ..., L-1] to sort
- \bullet Iterate through B and copy non-empty buckets to A
- Time: $\Theta(n)$

Analysis

- Time: $\Theta(L+n)$
- Space: $\Theta(L+n)$

MSD-Radix-Sort

Main Idea

- Sort multi-digit numbers from the most significant digit to the least significant digit
- Sort by the first digit
- Break down in groups by the first digit
- Recursively sort the rest of the digits
- Sort is not stable

Analysis

- Space: $\Theta(n+R+m)$
- Time: O(mnR)
 - -O(n) if the items are in limited range

LSD-Radix-Sort

Main Idea

- Apply single digit bucket sort from the least significant digit to the most significant digit
- Sort is stable

Analysis

- Time: $\Theta(m(n+R))$
- Space: $\Theta(n+R)$

CS 240 Module 4 Summary

Angel Zhang

Winter 2022

AVL Properties

- Height-balance property: The heights of the left and right subtree differ by at most 1
 - the height of an empty tree is defined to be -1
- If node v has left subtree L and right subtree R, then

$$balance(v) = height(R) - height(L) \in \{-1, 0, 1\}$$

• An AVL tree with n nodes has $\Theta(\log n)$ height

AVL Operations

- Insert
 - Insert KVP with the usual BST insertion and update height
 - Restructure if necessary (at most once)
- Delete
 - Delete KVP with the usual BST deletion and update height
 - Restructure if necessary (may need to keep rebalancing up to the root)

AVL Runtime

- Search: $\Theta(height)$
- Insert: $\Theta(height)$
 - Restructure restores the height of the subtree to what it was
 - Restructure at most once
- Delete: $\Theta(height)$
 - Restructure may be called $\Theta(height)$ times (all the way up to the root)
 - Restructure takes constant time so the total cost is still $\Theta(height)$
- Worst-case cost for all operations is $\Theta(height) = \Theta(\log n)$

CS 240 Module 5 Summary

Angel Zhang

Winter 2022

Skip List Properties

- A hierarchy S of ordered linked list S_0, S_1, \dots, S_h
- Special keys $-\infty$ and $+\infty$ (sentinels)
- List S_0 contains the KVPs of S in non-decreasing order
- \bullet The other lists store only keys, or links to nodes in S_0
- List S_h contains only the sentinels
- The root is the left sentinel in S_h
- Usually has more nodes than keys

Skip List Randomization

- Repeatedly toss a coin until we get a tail
- If i is the number of heads, then i will be the height of tower of k
- $P(\text{tower of } k \text{ has height} \ge i) = \frac{1}{2^i}$

Skip List Analysis

- Expected space: O(n)
- Expected height: $O(\log n)$
- Search: $O(\log n)$ expected time
- Insert: $O(\log n)$ expected time
- Delete: $O(\log n)$ expected time

CS 240 Module 6 Summary

Angel Zhang

Winter 2022

Interpolation Search

- Works well if keys are uniformly distributed
- Recurrence relation is $T^{avg}(n) = T^{avg}(\sqrt{n}) + \Theta(1)$
- Resolves to $T^{avg}(n) \in \Theta(\log \log n)$
- Worst case is however $\Theta(n)$
 - Occurs when the keys are not uniformly distributed
- Trick
 - Use interpolation search for $\log n$ steps
 - If key is still not found, switch to binary search
 - Worst case $O(\log n)$, but could be $\Theta(\log \log n)$

Trie

Overview

- A dictionary for bit strings
- Let |x| be the length of a string x
- Search, insert and delete all take O(|x|) time
- Efficient for prefix search

Variation 1: No Leaf Labels

- Do not store actual keys at the leaves since they are stored implicitly along the path to the leaf
- Halves the amount of space

Variation 2: Allow Proper Prefixes

- Allow prefixes
- Internal nodes may now also represent keys, use a flag to indicate such nodes
- Remove \$ children and replace them with flags
- More space efficient

Variation 3: Pruned Trie

- Stop adding nodes to trie as soon as the key is unique
- Save space if there are only a few long bitstrings
- Strings need to be stored at leaves
- Most efficient variation in practice

Compressed Tries

Overview

- Each internal node stores an index next bit to be tested during a search
- Each internal node has at least 2 children
 - -n leaf nodes (keys) means at most n-1 internal nodes
 - At most 2n-1 nodes
 - Total space is $\Theta(n)$
- \bullet When searching, need to explicitly check whether the string stored at the leaf is x
- All operations are O(|x|)

Multiway Tries

Overview

- Represents strings over any fixed alphabet $|\Sigma|$
- Each node has at most $|\Sigma| + 1$ children
- Inleudes one child for the end-of-word character \$

Children Storage

- Solution 1: Array of size $|\Sigma| + 1$ for each node
 - O(1) to time search child, $O(|\Sigma|n)$ space
- Solution 2: List of children for each node
 - $-O(|\Sigma|)$ to time search child, O(n) space
- Solution 3: AVL-tree of children for each node
 - $-O(\log |\Sigma|)$ time to search child, O(n) space
 - Best in theory, but not worth it in practice unless $|\Sigma|$ is very large

CS 240 Module 7 Summary

Angel Zhang

Winter 2022

Direct Addressing

- Special situation: any dictionary key k is integer with $0 \le k < M$
- All operations are O(1)
- Total storage is $\Theta(M)$
- Drawbacks:
 - Space is wasteful if $n \ll M$
 - Keys must be integers

Hashing with Chaining

Worse Case

- \bullet In the worst case, all n items hash to the same array index.
 - Insert: O(1)
 - Search: $\Theta(n)$
 - Delete: $\Theta(n)$

Runtime

• The **Load factor** is defined as

$$\alpha = \frac{n}{M}$$

where n is the number of items and M is the size of hash table

- α is the average bucket size
 - Insert: $\Theta(1)$
 - Search and Delete: $\Theta(1 + \text{size of bucket } T[h(k)])$
 - Average runtime is NOT $\Theta(1+\alpha)$
- Under uniform hashing assumption, the expected size of bucket T[h(k)] is at most $1 + \alpha$.
 - Expected runtime of *Insert* is $\Theta(1+\alpha)$.
 - Expected runtime of Search and Delete is $\Theta(1+\alpha)$.
 - Space is $\Theta(M+n) = \Theta(n/\alpha + n)$

Rehashing

- Keep a minimum and a maximum allowed load factor $0 < c_1 < c_2$
- Rehash whenever $\alpha < c_1$ (use smaller M) or $\alpha > c_2$ (user larger M).
- Runtime is $\Theta(M+n)$ but happens rarely

Linear Probing

- Entries tend to cluster into contiguous regions.
- Many probes for each Search, Insert and Delete

Double Hashing

- Double hashing with a good secondary hash function does not cause the bad clustering produced by linear probing.
- Search, Insert, Delete work as in linear probing, but with a different probe sequence.
- Linear probing is a special case of double hashing with $h_2(k) = 1$

Cuckoo Hashing

- Use independent hash functions h_0, h_1 and two tables T_0, T_1 .
- An item with key k can only be at $T_0[h_0(k)]$ or $T_1[h_1(k)]$

Operations

- Insert starts with T_0 and alternates between T_0 and T_1 , kicking out the current occupant until no item is kicked out
- May lead to a loop of "kicking out", maximum 2n attempts
- \bullet Rehash with a larger M and new hash functions if Insert failed

Runtime

- Search and Delete: O(1)
- Insert may be slow, but expected constant time if the load factor is small
- Works well in practice

Notes

- The two hash tables do not have to be of the same size
- Load factor

$$\alpha = \frac{n}{T_0 + T_1}$$

Hashing vs. BSTs

Advantages of BSTs

- $O(\log n)$ worst-case operation cost
- Predictable space usage
- No need to rebuild the entire structure
- Ordered dictionary operations (rank, select, etc.)

Advantages of Hash Tables

- \bullet O(1) operations (if hashes well-spread and load factor small)
- Choose space-time trade off via load factor
- Cuckoo hashing achieves worst-case O(1) for Search and Delete.

CS 240 Module 8 Summary

Angel Zhang

Winter 2022

Quadtrees

Overview

- A set S of n points in the plane
- Bounding box R:
 - Smallest square $[0, 2^k] \times [0, 2^k]$ containing all points
 - Find R by compute the maximum x and y values in S
 - The side length is a power of 2

Range Search

- \bullet Query rectangle A
- \bullet R is the region associated with current node, 3 cases
 - -R does not intersect $A \Rightarrow \text{red node}$, do not search its children
 - -R is fully contained in $A \Rightarrow$ green node, report all points inside R
 - -R intersects A but is not contained in $A \Rightarrow$ blue node, recursively search its children
 - If R is a leaf and stores a point inside A, then report it

Runtime

• The **spread factor** is defined as

$$\beta(S) = \frac{L}{d_{min}}$$

where L is the side length of R and d_{min} is the smallest distance between two points in S.

- In the worst case, height $h \in \Omega(\log \beta(S))$
- In all cases, height $h \in O(\log \beta(S))$
- Construction: $\Theta(nh)$ worst case
- RangeSearch: $\Theta(nh)$ worst case even if the search result is empty
 - Worse than exhaustive search
 - In practice usually much faster

Summary

- Easy to generalize to higher dimensions (octrees, etc)
- Easy to compute
- Simple arithmetic: division by 2 each time (bit shift)
- Space potentially wasteful, but good if points are well-distributed

kd-Tree

Range Search

- Similar to quadtree range search
- Query rectangle A
- R is the region associated with current node, 3 cases
 - -R does not intersect $A \Rightarrow \text{red node}$, do not search its children
 - -R is fully contained in $A \Rightarrow$ green node, report all points inside R
 - -R intersects A but is not contained in $A \Rightarrow$ blue node, recursively search its children
 - If R is a leaf and stores a point inside A, then report it

Runtime

- Construction: $\Theta(n \log n)$
- Height: $O(\log n)$
- RangeSearch: $O(s + \sqrt{n})$

Problems

- Do not handle insertion and deletion well
- After insert or delete, split might no longer be at exact median
- Height is no longer guaranteed to be $O(\log n)$

Range Tree

Modified BST Range Search

- Search for k_1 gives left boundary path P_1
- Search for k_2 gives right boundary path P_2
- Find topmost inside nodes
 - not in P_1 or P_2
 - left children of nodes in P_2

- right children of nodes in P_1
- Output nodes in the search range
 - Check each node in P_1 and P_2 and report if in range
 - Report all topmost inside nodes and nodes in their subtree

Modified BST Range Search Runtime

- Searching for P_1 and P_2 takes $O(\log n)$
- Checking boundary nodes takes $O(\log n)$
- $O(\log n)$ topmost inside nodes
- Total number of nodes in the subtrees of topmost inside nodes $\leq s$
- Total time $O(s + \log n)$

Range Search in 2D Range Tree

- Perform modified BST Range Search on the primary BST using x-coordinates
- Find boundary and topmost inside nodes
- Check if boundary nodes have valid x-coordinate and y-coordinate
- For each topmost inside node, perform range search in associated y-BST using y-coordinates
 - Find boundary and topmost inside nodes
 - Check boundary nodes have valid x-coordinate and y-coordinate
 - Report all nodes below topmost inside nodes

Analysis

- Suppose d is the dimension of the range tree
- RangeSearch: $O(s + \log^d n)$
- Space: $O(n(\log n)^{d-1})$
- Construction: $O(n(\log n)^{d-1})$

Summary

Quadtree

- Height is $\Theta(\log \beta(S))$
- Range search is $\Theta(nh)$ worst case
- Simple, easy to implement insert and delete
- Works well only if points evenly distributed
- Wastes space if points not evenly distributed

kd-Tree

- Construction is $\Theta(n \log n)$
- Height is $\Theta(\log n)$
- Range search is $O(s + \sqrt{n})$
- Space is O(n)
- Insert and delete cause imbalance and affects range search time and there is no simple fix

2D Range Tree

- Construction is $O(n \log n)$
- Range search is $O(s + \log^2 n)$, fastest among three data structures
- Space is $O(n \log n)$
- Waste some space
- Insert and delete cause imbalance but this can be fixed with occasional rebuilt

CS 240 Module 9 Summary

Angel Zhang

Winter 2022

Karp-Rabin

Main Idea

- Use hashing to eliminate guesses faster
- Compute hash function for each guess, compare with pattern hash
 - If values are unequal, then the guess cannot be an occurrence
 - If values are equal, **verify** that pattern actually matches text

Runtime

- Expected runtime is O(m+n), assuming a good hash function few collisions
- Worst case is $\Theta(mn)$ but is extremely unlikely.

Knuth-Morris-Pratt

Details

- Failure Array
 - -F[j] stores the length of the longest prefix of P[0...j] that is a proper suffix of P (or in other words, a suffix of P[1...j])
 - Construction takes $\Theta(m)$
- Starting from the left, match P with T,
- Let i be the index within T and j be the index within P.
 - If match is successful, increment i and j (move forward)
 - If match is unsuccessful at m, if j > 0, update j to be F[j-1]. Otherwise update i to be i+1

Runtime

- Construction of failure array: $\Theta(m)$
- Main KMP function: $\Theta(n)$
- Total runtime: $\Theta(m+n)$

Boyer-Moore

Main Idea

- Fastest matching on English Text
- Reverse-order searching
- When a mismatch occurs choose, the better option among
 - Bad character heuristic
 - Good suffix heuristic

Details

- Last occurrence array
 - Last occurrence of character c in P
 - Define L(c) = -1 if character c does not occur in P
 - Bad character heuristic can only be used if L(c) < j
 - Computation takes $O(m + |\Sigma|)$
- Upon mismatch, update $j \leftarrow m-1$

$$- \text{ If } L(c) < j,$$

$$i \rightarrow i + (m-1) - L(c)$$

(align the last occurrence of character)

- If c does not occur in P,

$$i \rightarrow i + m$$

(shift past T[i])

- If
$$L(c) > j$$
,

$$i \to i + 1 + (m - 1) - j$$

(shift P by 1)

 \bullet Formula for i that works in all cases

$$i \leftarrow i + m - 1 - \min\{L(c), j - 1\}$$

Summary

- Performs very well, even when using only bad character heuristic
- Worst case runtime is O(nm) with bad character heuristic only, but in practice much faster
- On typical English text, Boyer-Moore looks only at $\approx 25\%$ of text T

Suffix Tree

Main Idea

- \bullet Search for many patterns P within the same fixed text T
- \bullet Preprocess the text T rather than pattern P
- \bullet Store all suffixes of T in a trie
 - Compressed trie $\Rightarrow O(n)$ space
 - Store suffixes implicitly via indices into T
- \bullet P is a substring of T iff P is a prefix of some suffix of T
- When pattern searching, search for P in compressed trie

Runtime

- Construction: $\Theta(n^2|\Sigma|)$
- Pattern matching: $\Theta(m|\Sigma|)$

Summary

- Theoretically good
- Construction is slow or complicated
- Wastes space
- Rarely used in practice

Suffix Arrays

Main Idea

- Store suffixes implicitly (use start indices)
- Store sorting permutation of the suffixes in T
- For pattern matching, apply binary search

Details

- Construction
 - Write out the suffixes of T
 - Sort lexicographically
 - $-A^{S}[j]=i$ such that $T[i\ldots n]$ is the suffix in this slot
 - Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)
- Pattern matching
 - Apply binary search

Runtime

- Construction:
 - Worst case $\Theta(n^2)$
 - Can achieve $\Theta(n \log n)$
- Pattern matching: $\Theta(m \log n)$

Summary

- Sacrifice some performance for simplicity
- Slightly slower (by a log-factor) than suffix trees
- Easier to build
- Less space

CS 240 Module 10 Summary

Angel Zhang

Winter 2022

Type of Data Compression

Logical vs. Physical

- Logical:
 - Uses the meaning of the data
 - Only applies to certain domains
- Physical:
 - Only know physical bits in data
 - Does not know their meaning

Lossy vs. Lossless

- Lossy Compression
 - Achieves better compression ratios
 - Decoding is approximate
 - Exact source text S is not recoverable
- Lossless Compression
 - Always decodes S exactly

Character Encoding

- Fixed-length code: All codewords have the same length
- Variable-length code: Codewords can have different lengths

Huffman Encoding

Algorithm

- Determine frequency of each character
- For each character c, create a trie containing c
- Find two tries with minimum weight

- Merge them with new internal node and new weight is the sum
- Repeat last two steps until there is only one trie

Properties

- The constructed trie is not unique
- Two passes (compute frequency and encode)
- Constructed trie is optimal
- Coded text is shortest among all prefix-free character encodings with $\Sigma_C = \{0, 1\}$
- If the frequencies are almost equal, then the compression ratio would not be good.

Run-Length Encoding

Overview

- Variable-length
- Multi-character encoding
- Source and coded alphabet are both binary
- Decoding dictionary is unique

Elias Gamma Coding

- $|\log k|$ copies of 0, followed by
- binary representation of k (no leading 0)

Properties

- An all-0 string of length n would be compressed to $2\lfloor \log n \rfloor + 2 \in o(n)$ bits
- No compression until run-length ≥ 6
- Expansion when run-length equals to 2 or 4

Lempel-Ziv-Welch

Overview

- Start with dictionary D_0 , usually ASCII, which uses code numbers $0, \ldots, 127$
- Every step adds a multi-character string to the dictionary, using code numbers 128, 129, . . .
- Encoding:
 - Current dictionary as a trie
 - Parse trie to find longest prefix w already in dictionary

- Encode w with one number
- Add wK where K is the character that follows w already in dictionary
- Creates one child in the trie at the leaf where we stopped
- Encoded output:
 - A list of numbers
 - Usually converted to bit-string with fixed-width encoding using 12 bits
- Decoding:
 - Build dictionary while reading the coded string
 - One step behind

Summary

- Go through the string only once and do not need to see the whole string
- Compresses quite well on English text

bzip2

Overview

- Uses text transform
- Change input into a different text that is not necessarily shorter, but has other desirable qualities
- Steps:
 - 1. **Burrows-Wheeler Transform**: Repeated subtrings transform into long runs of characters
 - 2. **Move-to-Front Transform**: Long runs of characters transform into long runs of zeros and skewed frequencies
 - 3. Modified RLE: Long runs of zeroes mean shorter encoded text. Skewed frequencies remain
 - 4. **Huffman Encoding**: Compresses well since frequencies are skewed

Move-to-Front Transform

Overview

- Dictionary L is stored as an unsorted array or linked list
- After an element is accessed, move it to the front of the L
- \bullet Encode each character of S by its index in L
- After each encoding, update the L with MTF

Properties

- A character in S repeats k times \iff C has a run of k-1 zeroes
- C contains many small numbers and a few large ones.
- C has the same length as S, but better properties

Burrows-Wheeler Transform

Overview

- Permute the source text
- The coded text has the exact same letters, but in a different order
- Source and coded alphabets are the same
- If original text had frequently occurring substrings, then transformed text should have many runs of the same character more suitable for MTF

Details

- \bullet Assume that S ends with \$
- A cyclic shift of S is the concatenation of S[i+1...n-1] and S[0...i], for $0 \le i < n$.
- ullet The encoded text C consists of the last characters of the cyclic shifts of S after sorting them

Encoding

- Write all consecutive cyclic shifts
- Sort cyclic shifts lexicographically
 - \$ is lexicographically smaller than other characters
- Extract last characters from sorted shifts, i.e. last column
- Runtime
 - For sorting, letters after \$ do not matter
 - Same as sorting suffixes of the soure text, use MSD-Radix-Sort
 - $-O(n\log n)$ for sorting
 - Read coded text from suffix array in O(n) time

Decoding

- Given C, the last column of sorted shifts array
- Number the rows for the last column (from 0 to m-1)
- \bullet Reconstruct the first column by sorting C
- Number the rows for the first column (equal characters stay in the same order)
- Recover source text, starting from the \$ in the last column to recover S[0]
- \bullet Shift S[0] back and repeat the process

Summary

- Encoding
 - $-O(n \log n)$ with special sorting algorithm
 - MSD is good in practice but worst case is $\Theta(n^2)$
 - Read encoding from the suffix array
- Decoding
 - $-O(n+|\Sigma_S|)$
 - Faster than encoding
- Encoding and decoding both use O(n) space
- Tends to be slower than other methods
- Combined with MTF, modified RLE and Huffman leads to better compression

CS 240 Module 11 Summary

Angel Zhang

Winter 2022

Sorting in External Memory

- HeapSort
 - Poor memory locality
 - Access indices that are far apart (children's indices doubled from parent's indices's)
 - Typically one block transfer per array access
 - Does not adapt well to external memory model
- MergeSort
 - Access consecutive locations
 - Can read in blocks
 - Ideal for external memory model

MergeSort in External Memory

- $\frac{n}{B}$ block transfers for input streams and $\frac{n}{B}$ for output stream, total $\frac{2n}{B}$
- $\log_2 n$ rounds
- Total number of **block transfers** is

$$\frac{2n}{B} \cdot \log_2 n \in \Theta\left(\frac{n}{B}\log n\right)$$

d-way Merge Runtime

- Internal:
 - Priority queue P with size d, implemented with a min-heap
 - One *insert()* and *deleteMin()* for each item
 - Total cost is $\Theta(n \log d)$
- External:
 - Assuming d+1 blocks and P fits into memory
 - $-\frac{2n}{B} \in \Theta(\frac{n}{B})$ block transfers

d-way MergeSort Runtime

- Internal:
 - $-\log_d$ rounds of merging
 - Each round takes $\Theta(n \log_2 d)$
 - Total cost is

$$\Theta(\log_d n \cdot n \log_2 d) = \Theta\left(\frac{\log_2 n}{\log_2 d} \cdot n \log_2 d\right) = \Theta(n \log n)$$

- In internal memory, d-way MergeSort has the same running time theoretically
- In practice d-way is slower for maintaining a heap
- External with no improvement:
 - $-\log_d n$ rounds of merging
 - Each round takes $\Theta(\frac{n}{B})$ block transfers
 - Total cost is $\Theta(\frac{n}{B} \cdot \log_d n)$
- External with improvement:
 - Sorting $\frac{n}{M}$ sorted runs
 - $-\log_d \frac{n}{M}$ rounds of merging
 - Each round takes $\Theta(\frac{n}{B})$ block transfers
 - Total number of **block transfers** is

$$\Theta\left(\frac{n}{B} \cdot \log_d \frac{n}{M}\right) = \Theta\left(\frac{n}{B} \cdot \log_{M/B} \frac{n}{M}\right)$$

since $d \approx \frac{M}{B} - 1$

- This is also a **lower bound** in external memory model for comparison-based sorting

2-4 Trees

Properties

- Every node is either
 - 1-node: one KVP and two subtrees
 - **2-node**: two KVP and three subtrees
 - **3-node**: three KVP and four subtrees
- The keys at a node are between the keys in the subtrees.
- All empty subtrees are at the same level (important to ensure small height)
- Height is $O(\log n)$

Operations

- Insert
 - Overflow resolved by **node splitting**
 - Take the middle key (the right key if there are two middle keys) and move it up a level, then split the keys on two sides
 - Might need to split until reaching the root
- Delete
 - Underflow resolved by **rotate/transfer** or **merge**
 - If a rich immediate sibling exists, then rotate/transfer (similar to an AVL tree)
 - Otherwise merge (bring parent node down)

a-b Trees

Properties

- Each node has at least a subtrees, unless it is the root
- Each node has at most b subtrees
- The root has at least 2 subtrees
- A node has d subtrees \iff it stores d-1 KVPs
- Empty subtrees are at the same level
- The keys in the node are between the keys in the corresponding subtrees
- Requirement: $a \leq \left\lceil \frac{b}{2} \right\rceil$
- Smallest number of KVP: $1 + 2a^h$
- Height: $O(\log_a n) = O(\log n / \log a)$

Operations

- Insert
 - Overflow resolved by **node splitting**
 - Take the middle key (the right key if there are two middle keys) and move it up a level, then split the keys on two sides
- Delete
 - Underflow resolved by **rotate/transfer** or **merge**
 - If a rich immediate sibling exists, then rotate/transfer (similar to an AVL tree)
 - Otherwise merge (bring parent node down)

Runtime

- Height is $O(\log n / \log a)$
- Choose $a = \lceil b/2 \rceil$ to minimize the height
- Work at node can be done in $O(\log b)$ time
- Total cost: $O(\log n)$

B-Tree

Properties

- An a-b tree tailored to the external memory model
- Every node is one block of memory (of size B)
- ullet b is chosen maximally such that a node with b-1 KVPs fits into a block of memory
- b is called the **order** of the B tree. Typically $b \in \Theta(B)$
- a is set to $\lceil b/2 \rceil$ to minimize height

Runtime

- All operations require visiting $\Theta(height)$ nodes
- Work within a node is done in the internal memory so no block transfer
- The height is $\Theta(\log_a n) = \Theta(\log_B n)$
- \bullet Therefore all operations require $\Theta(\log_B n)$ block transfers