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Logic 1 Introduction

Valid

An argument is valid (or correct, or sound) if whenever the premises are true, the

conclusion is also true.

Proposition

A proposition is a statement that is either true or false.

Equivalent ways of expressing an implication
The following are logically equivalent.
1.p—=q.
2. If p then q.
3. Whenever p, then q.
4. p is sufficient for q.
5. p only if p.
p implies q.
q if p.

q whenever p.
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q is necessary for p.

10. q is implied by p.

Logic 2 Propositional Language & Syntax

Atomic Formula

An atomic formula, or atom, is an expression in £? with length one consisting of a

variable only. The set of atomic formulas in £ is denoted by Atom(LP)



Unique Readability
Every formula of Form(L?) is of exactly one of the six forms: an atom, ~A, AAB, AV B,
A — B or A<+ B, and in each case, it is of that form in exactly one way.
Precedence Rules
e — has precedence over A
e A has precedence over V
e V has precedence over —

e — has precedence over <+

Logic 3 Propositional Language Semantics

Truth Valuations
e A truth valuation is a function ¢
t: Atom(LP) — {0,1}
whose domain is the set of all propositional symbols and range is {0, 1}.
e A truth table list the values of a formula under all possible truth valuations.

e A truth valuation corresponds to a single row in the truth table.

Satisfiability
e A truth valuation ¢ satisfies a formula A in Form(L?) if and only if A* = 1.
e We use the Greek letter X to denote any set of formulas.

e X' =1 if and only if each formula B € 3 has B" = 1.

Satisfiable

A set of formulas ¥ C Form/(L?) is satisfiable if and only if there exists a truth valuation
t such that X' = 1. If there is no truth valuation ¢ such that X' = 1 (or equivalently, if
¥t =0 for all truth valuations t), then the set ¥ is unsatisfiable.

Notes

e Note that X! = 1 means that under the truth valuation ¢, all the formulas of ¥ are

true.

e On the other hand, X! = 0 means that for at least one formula B € X, we have that
Bt =0.



e In particular, X! = 0 does not necessarily mean that C* = 0 for every formula C' in
3.
Tautologies and Contradictions

e A formula A is a tautology if and only if it is true under all possible truth valuations.

For every truth valuation ¢, A* = 1.

e A formula A is a contradiction if and only if it is false under all possible truth

valuations. For every truth valuation ¢, A® = 0.

e A formula that is neither a tautology nor a contradiction is called contingent.

Law of Excluded Middle

pV —p is a tautology.

Law of Contradiction

p A —p is a contradiction.

Tautologies and Contradictions

A is a tautology if and only if A is a contradiction.

Tautological Consequence
Suppose 2 C Form(L?P) and A € Form(L?). We say that A is tautological consequence
of ¥ if and only if for every truth valuation ¢, if X! = 1, then A® = 1. We denote this as
YA
Empty Set
& E A means that A is a tautology. For every truth valuation ¢, @' = 1 is always
vacuously true. Therefore @ = A means that A is always true.
Tautological Equivalence
For two formulas we write A H B to denote A = B and B = A. A and B are tautolog-
ically equivalent if A H B.
Notes

e A — B is a formula. A valuation gives it a truth value.

e A = B if and only if the formula A — B is a tautology.



e O = A — B means that A — B is a tautology.
e A < Bis aformula. A valuation gives it a truth value.
e AH B if and only if A <> B is a tautology.

e O = A<« B holds if and only if A ++ B is a tautology.

Replaceability

Let A be a formula which contains a subformula B. Assume that B |H C, and let A’ be
the formula obtained by simultaneously replacing in A some occurrences of the formula
B by the formula C. Then A’ H A.

Duality

Suppose A is a formula composed only of atoms and the connectives -, V, A by the forma-
tion rules concerned these three connectives. Suppose A(A) results from simultaneously
replacing in A all occurrences of A with V, all occurrences of V with A, and each atom
with its negation. Then —A H A(A).

Logic 4 Propositional Calculus

Literal

A formula is called a literal if it is of the form p or —p, where p is a proposition symbol.

The two formulas p and —p are called complementary literals.

Disjunctive Normal Form (DNF)

A disjunction with conjunctive clauses as its disjuncts is said to be in Disjunctive Nor-

mal Form (DNF).

Conjunctive Normal Form (CNF)

A conjunction with disjunctive clauses as its conjuncts is said to be in Conjunctive
Normal Form (CNF).

Logic 5 Adequate Sets of Connectives

Number of distinct n-ary connectives

The number of distinct n-ary connectives is 2(2")



Adequate Set of Connectives

e Let S be a set of connectives. We say that S is adequate iff for every n > 1 and
for every n-ary connective f, there exists a formula, Ag, written using only the

connectives from S, such that f(p;,py,...,D,) H As

e The set of five standard connectives, {—, A, V, —, +}, is adequate.

e The set Sy = {—, A, V}, is adequate.

e To show that a new set S of connectives is adequate, show that all connectives in
So = {—, A\, V} are definable in terms of the new connectives in S.

Other Adequate Sets of Connectives
e {—, A} is an adequate set of connectives.
e {—,V} is an adequate set of connectives.

e {—,—} is an adequate set of connectives.

Proving inadequacy

We show that one of the connectives in the adequate set Sop = {—, A, V} cannot be defined

by using the connectives in S.

Logic 6 A Formal Deduction in Propositional Logic

Formal Deducibility

e A formula A is formally deducible from Y, written as X F A, if and only if ¥+ A

is generated by (a finite number of applications) the rules of the formal system.

e The sequence of rules generating > - A is called a formal proof.

Logic 6B Formal Deduction in Propositional Logic

Consequence vs. Deducibility
e A EBiff A — B is a tautology.

e AFBif oA — B.

Double-negation elimination (———)

For every formula A, one can prove =—A - A.



Empty Set of Premises
e When @ - A holds, A is said to be formally provable (from nothing).

e Two examples of formally provable formulas are non-contradiction and excluded
middle. That is,

g Fa(AAN-A)
gHFAV-A

Transitivity of Deducibility (Tr)

YA, ...,A, and Ay, ..., A, - A, then ¥ F A.

Syntactic Equivalence
For two formulas A and B, we write A H B iff A+ B and B+ A. They are said to be
syntactically equivalent.

Finiteness of Premise Set

If ¥ F A, then there is some finite Yy C X such that 3y - A.

Soundness and Completeness

e Every statement that one can prove should actually be correct. This property is

called soundness.

e One should be able to prove, within the system, every correct statement. This

property is called completeness of the formal system.

Soundness and Completeness of the Formal Deduction System

e The formal system of Natural Deduction (the eleven rules) is sound for propositional
logic. That is, for all ¥ and A,

if ¥+ A, then & = A.

e The formal system of Natural Deduction (the eleven rules) is complete for propo-
sitional logic. That is, for all ¥ and A,

if ¥ = A, then & F A.



Logic 6C Formal Deduction in Propositional Logic

Inconsistent Sets

e Definition. A set of formulas ¥ is inconsistent iff there exists a formula A such that
YA and ¥ F —A.

e Lemma. A set X is inconsistent iff for every formula B, ¥ - B.

Consistent Sets

e Definition. A set of formulas ¥ is consistent iff it is not inconsistent. That is, there
exists no formula A such that ¥+ A and X F —A.

e Lemma. A set X is inconsistent iff there exists a formula B such that X ¥ B.

Proofs and Inconsistency

Lemma. Let X be a set of propositional formulas, and A be a propositional formula. Then
Y+ A if and only if ¥ U {—A} is inconsistent.

Equivalently,

Y ¥ A if and only if ¥ U {=A} is consistent.

An analogy in Semantics

Lemma. Let X be a set of propositional formulas, and A be a propositional formula. Then
Y E A if and only if ¥ U {—A} is unsatisfiable.

Equivalently,

¥ = A if and only if ¥ U {—A} is satisfiable.

Maximal Consistent Sets

e Definition. A consistent set > is maximal if for every formula A, either A € ¥ or
—-A e

e Lemma. Let ¥ be a maximal consistent set. Then for every A, X - Aiff A e X

Soundness of Propositional Formal Deduction

Theorem. ¥ is satisfiable if and only if ¥ is consistent.



Logic 7 Resolution for Propositional Logic

Overview

Resolution theorem proving is a method of formal derivation (formal deduction) that has

the following features:

e The only formulas allowed in resolution theorem proving are disjunctions of literals.

e There is essentially only one rule of formal deduction, resolution.

Resolution

Resolution is the formal deduction rule
Cvp,DV-pF CVD

where CV p and DV —p are called parent clauses, and we say that we are resolving the
two parent clauses over p. CV D is called the resolvent. The resolvent of p and —p is

called the empty clause and is denoted by {}.

p,—p ke {}

In the context of resolution, the empty clause {} is a notation signifying that the contra-

diction pA—p was reached. By definition, the empty clause is unsatisfiable.
Soundness of Resolution Formal Deduction

The resolvent is tautologically implied by its parent clauses, which makes resolution a
sound rule of formal deduction.

The Davis-Putnam Procedure (DPP)

e If the output of DPP is the empty clause, {}, then this indicates that both p and —
p were produced. This implies that the set of clauses btained by pre-processing the
premises and negation of the conclusion of the argument was unsatisfiable, that is,

the argument (theorem) is valid.
e If the output of DPP is no clause, @, then no contradiction was found, and teh
original argument (theorem) was invalid.
Soundness and Completeness of DPP

Let S be a finite set of clauses. Then S is not satisfiable iff the output of DPP on input
S is the empty clause {}. DPP is sound and complete.



Logic 10 First-Order Logic

Domain

e The domain (or universe of discourse) is the collection of all persons, ideas, sym-

bols, data structures and so on, that affect the logical argument under consideration.

e A domain is always non-empty.

Individuals
e The elements of the domain are called individuals.

e An individual can be a person, a number, a data structure, etc.

Relations
e Generally, relations make statements about individuals.
e In each statement, there is a list of individuals, called argument list.
e The entries of the argument list are called arguments.
e If all arguments of a relation are individuals in the domain, then the resulting atomic
formula must be either true or false.
Arity

e The number of elements in the argument list of a relation is called the arity of the

relation.
e The arity of a relation is fixed.

e A relation with arity n is often called an n-ary relation symbol, or an n-place

relation symbol.
e A relation with arity n is often called an n-ary relation symbol, or an n-place
relation symbol.
Variables
e Variables range over the domain.
e Variables are often chosen from the end of the alphabet.
e x, y and z, with or without subscripts, suggest bound variable names.

e u, v and w, with or without subscripts, suggest free variable names.



Atomic Formulas

e A relation name, followed by an argument list in parentheses is called an atomic

formula.
e Atomic formulas take true/false values
e Atomic formulas can be combined by logical connectives, like propositions.

e Examples: Human(Socrates) and Mortal(Socrates).

Universal Quantifier
o VxA(x) is true iff A(u) is true for all possible values of u in the domain.
e Vx is called the universal quantifier and A(x) is called the scope of the quantifier.

e The variable x is said to be bound by the quantifier.

Existential Quantifier
e JIxA(x) is true iff A(u) is true for at least one value u in the domain.
e Jx is called the existential quantifier and A(x) is called the scope of the quantifier.

e The variable x is said to be bound by the quantifier.

Bound and free variables
e The variable appearing in the quantifier is said to be bound.

e Any variable that is not bound is said to be free.

Logic 11 First-Order Logic Syntax

Terms over L

Term(L) is the smallest class of expressions of L closed under the following formation

rules:
1. Every individual symbol is a term of L.
2. Every free-variable symbol is a term of L.

3. If ty,to, ..., t, are terms of £, and f is an n-ary function symbol, then f(¢1,1s,...,%,)

is a term of L.
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Atoms of £
An expression of £ is an atom in Atom(L) iff it has one of the following two forms:
1. If ty,ta, ..., t, are terms in Term(L), then F(ty,ts,...,t,) is an atom.

2. If t; and ¢y are terms in T'erm(L), then ~ (1, t2) is an atom.

Logic 12 First-Order Logic Semantics

Valid and Satisfiability

e A formula A is valid if every interpretation and valuation satisfy A. That is, if

A" =1 for every v.

e A formula A is satisfiable if some interpretation and valuation satisfy A. That is,

if AY =1 for some v.

e A formula A is unsatisfiable if no interpretation and valuation satisfy A. That is,

if AY =0 for every v.

Logical Consequence

e Suppose X is a set of formulas and v a valuation. We define that 3V = 1 (v satisfies

Y) if for every A € 3, AY = 1.

e Suppose X is a set of formulas and v a valuation. Then A is a logical consequece
of ¥, or 3 entails A, written as ¥ = A, iff for every valuation v, we have 3" =

implies A" =1

e O = A means that A is valid.

Satisfiability in First-Order Logic
Suppose X is a set of formulas in L.
e > C Form(L) is satisfiable iff there is some interpretation I such that 3V = 1.

e When X C Form(L) and >V = 1, we say that [ satisfies 3, or I is a model of ¥,

or X is true in /.

Logic 14 First-Order Logic Deducibility

Formal Deducibility fo Predicate Logic
e Formal deducibility in predicate logic is an extension of that in propositional logic.

e The 11 rules of formal deduction for propositional logic are included in predicate

logic, but the formulas occurring in them are now first-order formulas.

11



Formal Deducibility

Suppose X is a set of formulas in £ and A is a formula in £. We say that A is formally

deducible from ¥ in predicate logic iff the sequent
YHA

can be generated by the 17 rules of formal deduction. The use of these 17 rules is called
Natural Deduction for predicate logic.

Replacement of Equivalent Formulas

Let A\B,C € Form(L) with B H C. Let A’ result from A by substituting some (not
necessarily) all occurrences of B by C. Then A’ H A.

Complementation

Suppose A is a formula composed of atoms of £P, the connectives -, A,V and the two
quantifiers by the formation rules concerned, and A’ is the formula obtained by exchanging
V and A, 3 and V, and negating all atoms. Then A’ H —A.

Soundness and Completeness

Let ¥ C Form(L) and A € Form(L). Then ¥ = A if and only if ¥ = A. The theorem

states that the formal natural deduction for predicate logic is sound and complete.

Logic 15 First Order Logic Resolution

Prenex Normal Form (PNF)

A formula is in prenex normal form if it is of the form

Q1$1Q2$2 S QnInB

where n > 1, @); is the universal quantifier V or the existential quantifier 4, for 1 <1 < n,
and the expression B is quantifier free. The convention is that a formula with no quantifiers

(n = 0) is regarded as a trivial case of a prenex normal form.

Examples of Prenex Normal Form
o Vavy—(F(z) = G(y))
o VadyH(z,y)

o H(u,v)

12



Converting to PNF

Any formula in Form(L) is logically equivalent to (and can be converted into) a formula

in PNF. The following steps are needed to convert a formula to an equivalent one in PNF

1. Eliminate all — and < from the formula
2. Move all negations inward, such that negations on ly appera as part of leterals.
3. Standardize the variables apart

4. Move all quantifiers to the front.

J-free Prenex Normal Form

A sentence (formula without free variables) is said to be in 3-free prenex normal form
if it is in prenex normal form (PNF) and does not contain existential quantifier symbols.
Skolem Function

e Consider a sentence of the form Vrixs...Vx,dyA where n > 0, and A is an expres-

sion, possibly involving other quantifiers.

e Note that 3A generates at least one individual for each n-tuple (aq,as, ..., a,) in the
domain.

e In other words, the individual generated by dyA is a function of x4, ..., x,. It can be
expressed by using f(x1,xs,...,x,). The function f is called a Skolem function.

e The function symbol for a Skolem function is a new function symbol, which must
not occur anywhere in A.
Notes on Skolemization
Note that the sentence obtained by using Skolem functions is not, in general, logically
equivalent to the original sentence.
Dropping the Universal Quantifier
When working with formulas in 3-free prenex normal form (e.g. in resolution for first-order
logic), all variables are implicitly considered to be universally quantified).
Valid Argument & Satisfiability

Let ¥ be a set of sentences, and A be a sentence. The argument ¥ |= A is valid if and

only if the set

13
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is not satisfiable. In other words, an argument in first-order logic is valid (the conclusion
is a logical consequence of the premises) if and only if the set of clauses consisting of the

union of

e the set of clauses obtained from each premise B in ¥, and

e the set of clauses generated by the negation of the conclusion A

is not satisfiable

Instantiation

An instantiation is an assignment to a variable x; of a quasi-tern ¢, (defined as either
an individual symbol, or a vriable symbol, or a function symbol)

Unification

Two formulas in first-order logic are said to unify if there are instantiations that make the
formulas in question identical. The act of unifying is called unification. The instantiation
that unifies the formulas in question is called a unifier.

Steps of Proving by Resolution

To automatically prove using resolution that a theorem is a valid logical argument, we

perform the following steps:
1. Convert each formula to PNF
2. Replace 3 (the existential quantifiers) by Skolem functions.
3. Drop V (the universal quantifiers).
4. Convert the quantifier-free sentences to CNF.
If the set of clauses thus obtained is not satisfiable, then the theorem is a wvalid logical
argument.
Sound and Completeness of Resolution in First-Order Logic

A set S of clauses in first-order logic is not satisfiable if and only if there is a resolution
that derives the empty clause, {} (a contradiction) from S. The resolution is sound and
complete, if resolution with input S outputs the empty clause, then the S is not satisfiable
(soundness), and if the set S is not satisfiable, then resolution with input S outputs the

empty clause (completeness).

14



Logic 16 Turing Machines

Turing Machine

A Turing Machine M = (Q, X%, T, 0, qo, B, F') consists of
e (), the finite set of states of the control unit.
e >, the finite set of input symbols, also called the alphabet. ¥ C T
e [, the finite set of tape symbols.

e 0:QxI' = QxTI'x{L, R} is the transition function, where L and R stands for the
directions left and right.

e ¢y € ( is the transition function, where L and R stand for the directions left and
right.

e B is the blank symbol. Be ', B ¢ 3.

o [ C (@ is the set of accepting states.

Result of Computation
If we run a Turing Machine M with input x, the following outcomes are possible.

1. M reaches a state ¢ and symbol a such that (g, a) is undefined. In this case, we say
that M halts on input z. If ¢ € F, we say that M accepts x. Otherwise, we say
that M rejects .

2. M attempts to move left from the first (leftmost) cell on the tape. In this case, we
say that M crashes on input z.

3. M continues making transitions forever. In this case, we say that M runs forever

on input x, or M loops on input x.

Languages

Let M be a Turing machine. with input alphabet 3. Suppose that on every input x € ¥*,
M with input x halts. Then M decides the language of strings over ¥ that lead M to
accept, that is, the set

{z € ¥* | M accepts input z}

If M does not halt on every input, then M does not decide any language at all.

Decidable

A language is decidable if there is a Turing machine that decides it. If there is no such

Turing machine, the language is undecidable.

15



Examples of Decidable and Undecidable Languages

e The set of all strings is decidable.

The empty set is decidable.

Form(L?), the set of propositional formulas, is decidable.

The set of propositional tautologies is decidable.
e Form(L), the set of formulas of first-order predicate logic, is decidable.

e The set of universally valid formulas of first-order predicate logic is undecidable.

Logic 16u Undecidability

Universal Turing Machine

A universal Turing machine is a TM that, given as input a discription of a TM <.
and an input x for M, performs the actions of M on x, and produces the same result.
Halting Problem

The Halting Problem is

Given (M) and z, does M with input z halt?
As a language, this becomes HALT = {(M), z | (M) halts on x}.
A machine decides a language if it accepts every member of the language, and rejects
every non-member of the language.

Theorem (Turing)

The Halting Problem is undecidable.

Logic 16r Reductions

Reductions

Suppose that P; and P, are computational problems. A reduction from P; to P is an

algorithm (i.e., a Turing machine) that

1. Always halts, on any input

2. Given an instance x; of prblem P, produce an instance xo of problem P,, such that
in every case, the answer to x; (as an instance of P;) is the same as the answer to

xo (as an instance of Py)
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For a reduction R, we will denote its output on an instance z; by R(x1). In the case that
P, and P, are formal decision problems (languages), the condition for R to be a reduction
is that for all z1, z; € Py iff R(x1) € P, and also that R must always halt.

Algorithms via Reductions

Given problems P, and P, and an algorithm to solve problem P,, we want to find an
algorithm to solve problem P;. We can create a reduction R from P; to P,. If the
reduction R is correct, and the algorithm for P, is correct, then the specified algorithm

is correct for P;.

Undecidability via Reductions

Given problems P; and P, and the fact that problem P; is undecidable, we want to show
that problem P, is undecidable. We can create a reduction R from P; to P,. If the
reduction R is correct, an algorithm that decides P, would provide an algorithm to decide
P,. Since P, is undecidable, this is a contradiction and therefore no algorithm can decide
Ps.
Summary on Reduction
Given a reduction from P; to P, we have

e If P, is decidable, then P, is decidable.

e If P, is undecidable, then P, is undecidable.

Note that these two are contrapositives of each other, and the converse statements do not
hold.

Logic 161 Undecidability in Logic

Godel’s Incompleteness Theorem

Let I' be a set of formulas, such that membership in I' is decidable. Then there are two

cases:
1. PAUT is inconsistent, or
2. There is a formula A such that PAUT' - A and PAUT ¥ —-A

In other words, for a given set of premises I', one of the following holds.
e [ is useless, because it contradicts basic facts of arithmetic, or

e [ is undecidable, which means that given a formula, we cannot determine whether

it belongs to I' or not, or

e There are facts about arithmetic that are not implied by I'.
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Logic 17 Peano Arithmetic

Peano Arithmetic (PA) Axioms

Non-logical symbols:

e constant 0
e functions +, -, s (successor)

e cquality predicate (= or =)

Axioms
e PAL: Vz(s(z) % 0)
o PA2: Vavy(s(z) = s(y)) — (z = y))
e PA3: Vz(x 4+ 0 =x)
o PA4: VaVy(x + s(y) = s(x + y).
e PA5: Vz(x-0=0)
e PAG: VaVy(x - s(y) =x -y +x)
e PAT: For each formula A(u) with free variable u,

(A(0) AVz(A(z) — A(s(z))) — YV A(x)

Logic 18 Program Verification

Program Specification

A program specification is an (informal or formal) definition of what the program is
expected to do.

Hoare Triple

A Hoare triple is an assertion ( P ) C ( Q). The ( P ) is called the precondition, the
C is called program or code, and the ( Q ) is called the postcondition.

Partial Correctness

A Hoare triple (P ) C ( Q ) is satisfied under partial correctness, if and only if for
every state s that satisfies the precondition P, if the execution of the program C starting

from state s terminates in state ', then the state s’ satisfies the post condition Q.

18



Notes on Partial Correctness

The program
while true { x = 0; }

satisfies all specifications under partial correctness. It is an endless loop and never termi-

nates, but partial correctness only says what must happen if the program terminates.

Total Correctness

A Hoare triple (P ) C ( Q) is satisfied under total correctness, if and only if for
every state s that satisfies the precondition P, the execution of the program C starting

from state s terminates, and the state s’ satisfies the post condition Q.

Logical Variables

Sometimes the pre- and postconditions require additional variables that do not appear in
the program. hense are called logical variables (or auxiliary variables). For a Hoare
triple, its set of logical variables consists of those variables that are free in P or Q, and

do not occur in C.

Loop Invariants

A loop invariant is an assertion (condition) that is true bot before and after execution
of the body of a loop. It needs to be true before the while loop begins and true after the
while loop ends. It expresses a relationship among the variables used within the body of
the loop. Some of these variables will have their values changed within the loop. It may

or may not be useful in proving termination.

Proving Termination (for Total Correctness)

Only while loops can be responsible for non-termination in our programming language. To
prove termination, for each while while loop in the program, identify an integer expression

which is always non-negative and whose value decreases every time through the while loop.

Total Correctness Problem

The Total Correctness Problem: “Is a given Hoare triple ( P ) C ( Q | satisfied under
total correctness?” is undecidable. Proof: Reduce the Blank Tape Halting Problem.
Partial Correctness Problem

The Partial Correctness Problem: “Is a given Hoare triple ( P ) C ( Q ) satisfied un-
der partial correctness?” is undecidable. Proof: Reduce the Blank Tape Halting Problem.
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