


Basics from CS240 time space
I

· Algorithms focus on correctness
, efficiency,

Runtime - count" elementary operations"
function of a measure of the size of the input n.

- asymptotic notation : O,
R

, D, 0,
w

- Worst case, average case, ...

-recurrence - induction proofs

· Pseudocode

- try to be realistic about "elementary operations"

· Model of Computation

Algorithm Paradigms (CS341 Overview

· Divide and Conquer

Greedy
- graphs

· Dynamic Programming
- memorization

· Reductions : solving new problems based on things we already know

NP-completeness , undecidability, trackability.
-P-polynomial
- P = NP ?

Lower Bounds - Do we have the best algorithm?

· Decision Tree (comparison based)



Convex Hull

Problem: Given n points ,
find convex hull (smallest convex set containg the points)

Equivalent : The convex hull is a polygon whose sides are formed by lines (that go through
at least 2 points and have no points on one side of 1.

-&/
& I&

&&
Algorithm 1 : Find all edges st

. * holds O(n'

Find a line , check * (whether all points lie on just one side of ()
(2) = 0(n))

.

O(n)
lines points

Algorithm 2: Jarvis March Out or O(kn)

· Once we found one line I ,
there is a natural next line L.

· Find extreme one-minimize angle a O(u)

.&&
Repeat until we have all edges of the convex hull O(n)

If we let k be #edges on convex hull => 0(k)



Algorithm 3 : Reduction Onlogn)
· Sort points by x-coord Oculoga)
Start at leftmost point to build the edges of convex hull O(n)

%K-
Algorithm 4 : Divide andConquer

Partition into 2 sets
· Find convex hull on each side

Merge into single convex hull

E

E
T(n) = 2T(z) + 0(n)

Onlogn)

Can we do better ?



Convex Hull

Can we do better ?

Reduction : If we can find a faster algorithm for C
.
H

.

then we can also sort faster.
-

Given n numbers to sort (X, ...,
Xu)

Map points Xi to xi"(xi , X:

%). O(n)
Call C

. H
- I

f(n) for CH
start leftmost , go right on lower CH-sorted order

onIO(n + f(u) total for Sorting
- R(nlogn) / convex shape

C . H. is comparison-based => &(nlogn)

Timothy Chan : Olalogh) better than 0(n.h) and Onlogh)

Model of Computation

Pseudocode

All ... n] = 903 / initialize array to 0
, O(n)

Be mindful of operations that look like constant but are not.

Integers can get large ,
e .g. Fibonacci numbers

Can use bit counts. Storing n takes Ollogn) bits.

Multiplication

Computing a * b takes Olloga - logb) // normal math

Can we do better ? There exists a way to do it in O [Clogal (logb)05] // faster

Random Access Machine.

Accessing memory location takes constant time

Runtime

· Average ,
morst-case,...

· Want simple functions
,

e
.g. ulogn,

n"
,

etc. IExamples :

· (n+1) ! = (n+ 1)n!> O(u ! )
· log(n !) -> Oubgn)



Suppose worst-case runtime of

Algi is On

Alga is Ologn)
Which is better ?

Difficultto say. To compare , use Theta bounds,
O is an upper bound

, may not be light.

Divide and Conquer

Example 1 : Binary Search

T(n) = Th + c

= T() + c + C

=T()
= d + cOlog(n) Olloga)

- Ollogn)

Example 2 : QuickSort

Worst case : T(u) = TIn-1) + one Ont

Best case : T(n) = 2T(*) + cheO(nlogn)

Example 3: MergeSort

T() = 2T(z) + cheO(nlogn)
Rigorously, T(u) = T(Lu/)) + T(iu/27) + on



S

Recursion Tree for MergeSort

T() = 2 TIn/) + an , if his even

T() = 0
, if counting number of comparisons

T(u) Ch on
-

F

T(E) TIE) C Ch
Z Z on

TH T() TG TH)
on ch

oh

= logh levels.

# I # ↑ Ch

--

! : i
·

·

in : ...Ta : Th ... Th)
O -11 O O O

-TC) 8

T(n) = c(n + 2. + 4 . 4 +... + -n2) + n . 0

= cnlogn
-> Onlogn)

Solving Recurrences bySubstitution

THI = [TTET) + TCE)) + (- D if n

if n= 1
.

Base Case: 0 = T(l) = cnlogn = c . log(1) = 0

Induction Step : separate into 2 cases - n even and n odd

For n even: Fora odd,

T(n) = 2T(*) + n - 1 T(n) = T(E) + T(E) + n - 1

= 2C : Eloge + n -1

= chlogE + n -1 -> cllog(*) + c (E log(E) + n - 1 * Fact : log() < log() + 1 nz3

= chlogn-chloga + n-1

= cnlogn -cn + n -1
-> clog(z) + c(E)[Tog(z)+1] + n- 1

= cnlogn-(c-1)n-1
< cnlogh ifc = cE)log(z) + c(z) log(z) + c. + u- 1 ( ->n - (E - 1) 20

= (- 1)n = z - 1

=onlog(E) + c* + n- 1 alternative:
El -1 = 0 for n21 .

- calogn + c . + n - 1 Clogn-log
zchlogn = clogn -( - -Dn + = -

= cnlogn-(E-1n+ -1

The constant is growing. - chlogn if C22 and no



Watchout for Common Pitfall

T(n) = 2 T(u/2) + n

Claim : T(n) -0(n)

Prove Th) < cn
,

n = no

Th) = eT(E) + n

= 2. + n

= ch + u

= (c+1) u

Problem : The constant is growing.

Substitution - Changing the Guess

T(n) = STEX +TIES) + 1 if n >

if n = 1

T() = T(TET) + T(LE)) + 1

-> c . Tel + c(E) + 1

= ch +1

Try proving T(n) = cn-1 instead.

T() = +(ET) + T(LE)) + 1

< cTE] -1 + c) -1 + 1

= Ch - 1



Example - Similarity Between Rankings

Ranking 1 : B D,
C , AS

Ranking 2: A ,
D

,
B , C

Exact match = 1

S

= paise the same order ? 2- BC and DC

not very similar

Counting Inversions

123 4

B DC A

A DB4 2

Problem . How many pairs are in order ? e
.g. (2, 3) and (1 , 3)

Brute force : check every pair - OInt

Divide and Conquer

Divide into 2 halves.
from A (left half)

~
answer

answer from B (right half)
-

answer = ra + vB +D For each ajeB ,
count the number of items , r ,

in A that are
larger than as

ErjV =

get

Conquer Step ~
sorted A

IIIII f

-

Y - all items remaining> as
merge into

Kitems

aj

/as
↑

sorted B

When as is merged: rj
= k

r : Erj

Analysis

Th) = eT(z) + 0() -> O(nlogn) (similar to mergesort).



Master Theorem - Recursion Tree

T()= [aT() + c) uk)

C n >

Thn) cnt = an

-Y &
a . c. (*)" = ch" (t)-

TE) TE) TH

I·A A a=c . (*)" = ch()
T.................. T)

How many levels ? logah

=> T(n) = aT(t)+ cnk

= alaT() + c()1] + cnk

= a T() + ac()" + cnk

= T() + ac)" + act" + cn
--

logon - 1

= logon
+1) + [ac(

= nlogba +1) + chroni
Case 1 : a < b" > logba < K Case 3: If a <b" logoack.

Then &(E) " is a geometric series with < 1. The logt is a geometric series with
=> Sum is constant.
=> T(n) = nlogba +(1) + Ocul) The last term of 2 dominates.
=> Thn) - On' since logna < uk

=> Th) = ulga+) + -(nk()logmn)
Case 2 : If a = b" E logna = 1 [ nloggaT() + 0 (n" alogon. ngk)

Glogba + O(X log oh h[ T() U A &

Th9 1 = Elloga) = nlogba T() + O (a loggt (
= gloga +1) + O (nlogba)

=> T(u) = 110909T() + cu" · Ollogon) = Onlogba)
= n O() + cu" Ollogon)

= E(n"logn)



Closest Pair - Divide and Conquer

General Idea

Q L R

&

↑

I·
Sort by X-coord once· Onlogn)
Can access the points we want in O(n) time.
Let f be the min-distance of closest pair both in Land R.
Need to find a pair (g, r) , qeQ and reR such that d(gr) < S

Candidates : d(q, L) < S and dr
. L) < S

If one point p is outside the band of width 28
,

then dlp,
L < &

*
S may contain O(n) or all the points.

hopefully few points here
/& //II

a R

Sort by y-coord - only once

On the recursive subproblems , pull out relevant points in O(n).
Once extracted they are in sorted order.



Algorithm Overview

X = points sorted by X-cord Onlogn)
Y = points sorted by y - cord Onlogn)

ClosestPair(X ,
Y) returns distance between closest pair of points.

Lt dividing line (middle of X)
Extract XQ

,
XR (sorted points by X-coord in region & , R) O(n)

Extract Yo
, YR (sorted points by y-cord in region & , R) On)

Sat ClosestPair (Xa
,

Ya) T)
SR-ClosestPair (XR

, YR). T()

8 min &Sa ,
Gr3

Find S /vertical strip of width 28 around 1)
Ys S sorted by y-coord /extracted from Y1 O(n)

What do we do with S
.

Ys ?

Hope: If gres and goQ and reS and d(gr) 8
,

then g, r are near each other in Ys

L

a L
"

I I# ---

" I& R

- indepe in total

At most o points ahead to check.
ther (170

For each s-Ys
,

check distances with the next < points in Ys
.

Running Time

Thi = ST + In use

u = 2

=> T(n) -> O(nlogn)



QuickSelect

Runtime based on where pivot falls.

Average : Th) > (+T+T n > 2

n = 1

BFPRT - Blum Floyd Pratt Rivert Tarjan
· worst case O(n)

· Choose pirot so that it is close to the middle
· n= 10r + 5 +0 where r=1 and 0 = 0 * 9
Blocks of size 5 odd number of them

MOM-median of medians

· Find median of each block of size 5.

Find median of medians m ,
choose as pirot

rblocks have median less than m

3 elements of each block < m

=> 3r + 2 elements m

=> n - (3r+2) + 1 = n -3/5 ) -2-

+538=30

Th) T() +7))) + Oc
·

U = 15

S
d n < 15.

T(n) -> O(n)



Dynammic Programming

Fibonacci

-+f(n-1) fln-2

/ / &
flu-2) f(n-3) fin-3) f(u-4)

Repetition of subproblems.

Text Segmentation

A string of letters x[l .. n] where x[i]e &A ...23
·

Can A be split into 12 or more) words?

Build up a solution for Aln] from smaller subproblems

I 23456789

THE EMPT YM

O 0 1 1 I O 00 I / can be broken into words or not.

+ +111 - 1 +-15 / starting index.

Runtime : O(n2)

S[i] = I I if (sto] = 11 Word(x[ ... n)) V (S[] =11 Word(x [2... n])) v ... v (S[n-1] = 1 1 Word(x[n...n])

o otherwise

Longest Increasing Subsequence

Input : a sequence of numbers All ... n] where All] eN

0 I 23456789

0 52 14 316 9 2 -dummy
M[i] = length O I I 12213425

S[i] =jused O & O 0330576 g

M[i] = length of LIS that includes the element M[i]

if Inc( ,
i) = 1 then ML] + 1 else I.

M[i] = max if Incla, i) = 1 then ME2] + 1 else 1.I if Incli-1
,

i) then Mli-1] +1 else 1.

Runtime : Out)



Longest Common Subsequence

Input : All ...n] and Bll ... m] of characters.

Base cases: M(i
,

0) = 0 and M(o
, j) = 0.

M(i, j) = M[i][j] = length of LIS of ALli] and BLi :... j] (prefixes)

M(i , j) = (1 + M(i- 1 , j- 1) if Xi =yj

max[M(i -1
, j) ,

M(i , j- 13 otherwise

8) CAT A MAR A N

⑨ 000000000 O
↓↓

T O -> 00 I I

A 000 1 2

M O

A 8

R O

A 0

C 8

Algorithm Overview

for i =0
... n

,
Mi

, d = o // initialize first now with 0.

for i = 0
... n

, Mo,j) = 0 / initialize first column with 0
.

for i = 1... :

for j = 1 ...

m

if Xi = Y; then / match a character

Mij) z +Mini
1/ skip one character

M(i , j) + max &M(i- 1 , j) , M(i ,j- 1) 3

Finding Actual Solution.

Work backwards

OPT(i , j)
if i =o or jo then return / base case

if M/i , j) = M(i-1 ,j) then

OPT(i- 1 , j)
else if M(i

, j) = M(i , j-1)
OPT(i , j- 1)

else 1/ Xi = Yj

output i ,j I swap ?
OPT(i - 1 , j- 1)



Edit Distance

Input : 2 strings All ... n]
,

BL1 ...
m]

·
Find edit distance between X and y.

min # of changes
* change is one of : to match X and y.
insert a letter
· delete a letter

replace with another letter

Change Change 2.

replacement
S

-
NO WY

-

S NOW
- Y

SUNN- Y SUN -- NY
insertion deletion

3 changes /edits) 5 changes /edits)
· insert y
· replace 0 with N
· delete W

Subproblem : M(i , j) = M[i][j] = min # of changes to match XLI ... i) and y[1 ...j]

Base Cases : M(i, o) = i and M(0,j) =j

Recurrence :

M(i - 1 , j - 1) if Xi = Xj no change
M(i ,j) = min 1 + M(i- 1 , j- 1) replace ABCD > ABCE& 1 + M(i - 1

, j) delete ABCD > ABC-

1 + M(i
, j - 1) insert ABC_> ABCD



Weighted Interval Scheduling

Subproblem : M(i) = maximum weight subset of intervals I,
...,

[i.

Let w(il be the weight of Ii
,

and pli) be the latest interval among the set of intervals before i and disjoint from i.

M(i) = max I M(i-1) not choosing In

w(i) + M(p(is) choosing In

Order intervals 1 ... n by right endpoint. pli) is the rightmost interval that does not overlap
i

.

i

p(i)

Improvement 1

Compute all pli) first.
Sort intervals by right endpoints ,

relabel to get r . .... Un .
AND sort by left endpoints to get

naj= n

for k fromn down to 1 :

while V; overlaps 1k :

jaj- O(n) since j is always decreasing.
p((k) j

Overall runtime for Weighted Interval Scheduling : Onlogu)

Revised Algorithm

Sort by finish time

Sort by start time

Compute all pli)
M(d) = 0

for i = 1
... n

M(i) = max(M(i -1) , w(i) +M(p(i) 3.

Improvement 2

Recover S by recursive backtracking - save space
S-OPT(i)

if i=o then return
else if M(i-1) = w(i) + M(p(i)) not choosing Ii (skipped i)

return S-OPT(i- 1)

else choosing Ii

return SiSUS-OPT(pil)



Optimal Binary Search Trees

# nodes - ProbeDepth probability

Example : p .
= p2 = ps

=

px = ps
= 5

4

2
5

I 3

Search Cost = 1 .5 + 2 . 2 . 5 + 2 .3 . 5 = 55

Dynamic Programming Approach

Choose key k to be root :

k

nodes nodes
1 ...

k- 1 k+ 1
...

.

M(i
, j) - subproblem of i

...j

1 : 1 .

pig ↓ depth + 1 = add one more pi to search cost
·L

O 1 . 2 .

pi
search cost.

Let M[i
,j] be the optimal BST on tems i ... j.M

M[i
,j] = jM[ ,

k-1] + MIKH , j]3+ Land R subtrees have nodes I deeper,
so add one more pr for all i (j .

Improvement This is independent of choice k.

j

EPt = pi + pi+ + ... + p 0(j - i + 1) = 0(a)

Let Pli] =

+ where Plo =

0 , so t = PIj]-Pti-1] Ou) - one subtraction



0-1 knapsack

Input A set of items 91 ... n3 where item i has weight Wi and value v; and a knapsack with capacity W.

Goal A subset of items S such WiW so thatVi is maximized

Note : "O-1"means you either take an item or not.

Dynamic Programming Approach

M[i] = maximum value from items 1 to
i

.

do not take i : M[i-1]

take i : M[i-1]+ not considering weight restriction

2-dimensional subproblem

M[i
, w] =

max [vi
itS

Goal : safe MIn
,
W]com

To find M[i , w] :

* if wi < w
,

then M[i
,
w] < M[l-1

, w] no room ; not choosing item i

not choosing item i.S ·

elseMwmax SMW + v choosing itis (
Pseudocode

M[o, w] = 0 for w = 0
... W

for i = 1
... n :

for w = 0... W :

compute M[i , w] *

Runtime: 0(nW) pseudopolynomial

Runtime is polynomial in value of W rather than the size of W.

Recover Items

a Backtracking - use M to recover decision made

it n , w + W ,S

while is o

if M[i
,
w] = M[i-1

,
w] then /I did not choose i.

it i - 1

else 1/ chosen
i

.

S = Su [i].

W = W - Wi



② Store decision - also use Take (i , w) ; o (not take) or 1 /take)

· do not need to do comparison
still need to backtrack through subproblems

③ Store the set of items

·

more space
· faster



Memorization

0-1 Knapsack

M(i
, w) = max MCi-1

,
w)S

Vi + Mi-1 , w - Wil

Compute Mi, w) for oxixn , ow W.

Do we need all of the subproblems we compute ?

Interval Scheduling

Input: A set I = [1 ...
n3 of intervals

Goal: A subset SCI of pairwise disjoint intervals of maximum size

Greedy Choice

Select intervals with earliest finish time.

Sort intervals 1
...

n by finish time and relabel so fix ... "fr
S=

for i < I ton

if interval i is pairwise disjoint with intervals in S then Total work is O(n) since we only
S susib

.

3
examine each interval once

Runtime : Onlogn) + 0(n) -> O(nlogn)
sort constructs

Proof of Correctness

Suppose greedy algorithm returns a, az ... ak

sorted by end time

Suppose an optimal solution is b .... babk+ 1 ...
by (k) since b.

...
bibk+ ... br is optimal)

sorted by end time

a , ends before bi - greedy always choose interval that ends first.

=> dibz ... bkbkt
...

bu is a correct and optimal solution.
· end(a) < end (bil so a does not overlap ba,

bs,...

=> a, abs
...

bubkt
...

b is optimal by a similar argument.

: be does not intersect with a - otherwise greedy would not have chosen it.

Greedy chose as over be
, so end(a) -

> end (b2) < start(bs) and these intervals are disjoint.
Continue replacing to get a

...
ambit

...
by is an optimal solution

At every step,
we can do at least as good as ai . /Greedy stays ahead

To finish
,

we argue that if(<1 then a
...

anbit
...

by is an optimal solution
,

but then greedy algorithm would have chosen but

Therefore K= 1
. (We had that K < 1)



Scheduling to Minimize Lateness

Observation 1 : Once you start a job , always complete it.

j ja

better

Observation 2

There is never any value in taking a break.

Greedy Approaches

1
.

Shortest task first X

2 I job, is late

I 2
no lateness (maximum lateness = 0

di da

2. Do task with least slack

3. Optimal : Do task with earliest deadline

Order jobs by deadline (relabel) so dix da ... In.

Proof Advice
· Do not be general at first
· Try special cases

Compare wrong/other solutions with greedy solution



Scheduling to Minimize Lateness

Greedy Choice : order jobs by deadline.

di da
1(o()

Other Solution 0:
2 I

(G(l)

Greedy Solution G :
I 2

(G(2)

1o(x) = lateness of job x in 0 , ((x)= lateness of job x in G

(c = max(((i) , (a(e) 3

10 = max[lo(), (o(2) 3
(a() = (o() since G does I earlier

La(2) -> (o() since dixd2
,

and job 1 in 0 and job 2 in G finish at the same time.

=> lg < lol) = Lo

Theorem: Greedy solution is optimal.

Let 1 ... n be ordering of jobs by greedy algorithm .

d. d <... dn.

Consider an optimal ordering.
If it's the same as G then we're done.
If not

,
there must be 2 jobs that are consecutive but in different order.

=> jobs i
,j with dj di

Claim : swapping ; andj gives a new optimal solution.

new optimal solution has fewer inversions.

Proof of claim :

1o(x) = lateness of job x in 0 , ((x)= lateness of job x in G

(c = max((a(l) , (a(2)3
Lo = max[Lo()

,
(o() 3

·

La(1) < (o() since O does I later

La(2) -> (o() since dixd2
,

and job 1 in 0 and job 2 in G finish at the same time.

=> lg < lol) = lo

Replace I by i and 2 by j.



Fractional Knapsack

Proof of Correctness :

Contradiction. Suppose greedy solution is not Optimal . Compare Greedy with Optimal ,
Show that Greedy is better than Optimal

Let k be the first index where XK *YK
Then XK > Yi since greedy maximizes XK.

Since [X: Iy = W => there is a later them index (where 1> k such that y > X1
.

(can prove by contradiction?

Gi X, . ..

Xk
...

Xh
[

0 : Y ...

" Y - Yu

Note that it I t because of ordering.

Exchange some of item (for equal weight of item K in the optimal solution.

yk = yk + 5

y =
y - Δ

choose= min[
Y - XL

Xk - Yk

Then either XK = YK' or x = g)

Change in value : (i) - -() = - (since

y was optimal ,
so this could not be better. contradiction is found.

New optimal matches on one more index (k or 1).



Graph Representation

IVI = n m = n

IE) = m

Matrix Representation :

O
"4 is an edge .

123

I 01 0

2

3

Adjacency List

I 2 3
2

2 4 I
&

3 > 1
I · 4

S i

B

3

N

each edge appears in2 nodes

Space : O+ (m) -> O(n+2m)
#vertices



BFS

Start at 1
,

find its neighbours , explore these next

- find neighbours of neighbours

of
=

is neighbours
neighbours

Data Structure : quere

3 level:

I ·
5

I O
⑨ &

BFS starting from 1.
-

->
⑨

23- - - - 68 I

·
4

·

7 non-tree edges
Y
.

·
5--------- 2

g

em (Hand-shaking Lemma) Order of discovery : 1 2 3 6 8457

Runtime: 0(n+&deg() = 0+ m).

Note :

If In
, v) is a non-tree edge ,

then either u .
d = v

.

d , or lu
.

d -v
. d) = 1. levels differ by at most 1.

Applications
· Find the shortest path from vo to any node v (length = depth of vol.
· Find cycles (any non-tree edge)
· Test if graph is bipartite

- A : even levels in the BFS tree

- B: odd levels in the BFS tree
.

-non-tree edges can only be on the same level or in levels with depth differing by 1

same-level non-tree edges -> odd simple cycle exists -> graph is not bipartite

· & & O o
T

⑳ & -
leas

⑧ ·
⑪ O kS(b +common ancestor => simple cycle.

5----

bipartite graph. odd simple cycle. non-tree edge



DFS

&
b e DFS " DFS tree traversal.

C

d

⑨

⑨

· =>

..... --- tree edges
·

g ↳ non-

Order of discovery : a b e f g d a

I 2346910

Finish order. f g e C db a

5 7811 12 13 14

Lemma
.

All non-tree edges join an ancestor and a descendant in the DFS tree·

Parantheses structure.

Let d(v) be the discovery time of v
,

and f(v) be the finish time of r for all veV.

Discovery and finish times form a parenthesis system
If d(v) < d(u)

,
then#din) < flu) < f(r) OR AAUf(r)< din) < flul

nested disjoint



Cut Vertex

a

O

O V

b C

d(a)d(v) everything in T f(v) fla).

Definitions:

A vertex v is a cut vertex if G -v is not connected

An edge e is a cut edge if G- e is not connected. can be u itself.

-
Let u be the root of a subtree Tofv, X be a descendant of u. t least oneA

Define : low(u) = min [d(w) : (x
, w) is a non-tree edge3 -

Claim. A non-root vertex v is a cut vertex if and only if v has child u withHow(u)= d(v)

no edge going above v.

Compute low(n) recursively

low(n) = min min Sd(w) : (u. w) - E3 (x)Smin Slow() : X is a descendant of us 3
a

low (n) records how far up we can go from the subtree rooted at u. Vo

.Runtime: O(n + m)
· U

Compute all cut vertices Ox

Enhance DFs to compute low
,

or finish first => higher depth.
Run DFS to compute discovery times,

The
,

for every vertex u infinishtime order? use () to compute low(u).
For every non-root v, if v has a child n with low(n) = &(v) ,

then v is a cut vertex.
The root is a cut vertex if and only if it has more than one child.



DFS on directed graphs

⑨

&

·

-"forward ,w/ edge t
W L

&------------------
&- &

cross edges
Lemma: A directed graph has a (directed) cycle E DFS tree has a back edge

Proof : Suppose there is a directed cycle
Let v

,
be the first vertex discovered in the DFS.

Number vertices in cycle K, ...,
UK.

Claim : (VK
, VI) is a back edge.

cover and explore all v: before we finish v , since vI
-> Vi ,

for all i = z, ...,
KProof of claim : We must dis

When we test edge (VI , VI)
,

we label it a back edge since VI is an ancestor of VI in the PFS tree

Topological Sort

Example:

b->a
7

/
c -> d

Possible Results :

b cad
b da

c b d a

c db a

One solution : choose a vertex with no in-edges and remove it ; repeat.

DFS solution. use reverse of finish order.

S

bac *kedge finish order : n v y x +z ws
w· reverse : swz r X y V U

edge !
t

&

& I j
cross edges

Proof : For every directed edge (n
. v) ,

finish (u) > finish (v)

tree edge & Case I : u discovered before v..

Then because of (, v)eE
,

v is discovered and finished before u is finished.M
forward edge Tase2 : v discovered before U . G has no directed cycle,

we cannot reach u in DFS(v).
-

cross edge↑
so v finish before n is discovered and finished.



StronglyConnected

*

7 v+ U : ves + U&
n + v: n+ s - V

SLiS

Finding Strongly Connected Components in a Directed Graph

Don't need to test all pairs.

Run DFS = finish order f, ....Of the root.

Reverse edges of G, call it H.

Run DFS again with vertex orderOn
.....
f.

Lemma: Trees inthe 2nd DFS are exactly the strongly connected components.

Runtime : On+m) 2 PFS

Proof : Vertices u , v are strongly connected if they are in the same DFS tree in and DFS

() suppose u is discovered first in the 2nd DFS. Then since there is a path n+ v in the reverse graph , v is discovered before
u is finished in the 2nd DFS

(E) Suppose n. v are in the same tree
.

Let r be the root.

claim : r and n are strongly connected.

r is the root of tree containing n.

E path rou in reverse graph => nor in original graph.
We must show I path + u in original graph
When we started the tree rooted at r

.
n was undiscovered.

Why did we pick r ? It has a higher finish value in first Dis than u.

We have ner path in original.
U M

>-

If u is discovered before r in the 1st DFS
,

then w has a finish time that comes before u.
.

Contradiction.
So

, r is discovered before u and finishes later.
=> u is a descendant of r

=>E a path -u in original graph.



Minimum Spanning Tree (MST)

n vertices => n-1 edges in MST

Kruskal's Algorithm :

Correctness:

Base case: i = o trivially true

Assume by induction there is a UST matching T on the first i-1 edges
Greedy T: t . .

. .,
tiriti .....

tn-1

MST M: M , . . . ., Mini Mi,
...,

Mn-

Let ti = e(a,b) and let C be the connected component of T containing a

C V- C
⑤

a e b
⑳ ⑳

⑧ ① ⑱

①

&

⑨

, & ⑨

A e b'

When the algorithm considers all edges of weight wit have been considered.

None of them go between C and V-c.

Look at red path in M from a tob it must cross from C to V-c (on an edge e)
Then w(e) < w(el by ordering.
Exchange: Let M= /M- (e3) Use]

Claim: M' is a MST since M now matches Toni edges.
Proof : 1

.

M is a spanning free

2. w(M') = w(M)- w(e) + w(e) = w(M) => M' is MST
,

contradiction.

Union-Find

0(mlogm) = O(mlogn) = 20(mlogn) = 0 (mlogn).
-

Kruskal's Runtime: fmlogn)+m + Omegecost) -Oml,To E
-

11 j
Update S: O (size of set

&
· always change smaller set.
· new set is at least twice size of the smaller (at least doubling !
can only do this at most logn times.



Prim's Algorithm

V- C
V

·
-

* / -·
- ⑨

-- i O insertLinweight !
⑨- X

Build a single connected component T (eventually MST) by choosing a vertex v not in T

that has a minimum weight edge (n . v) where Ke
T

.

lementation .Imp
Need to find a vertex in V- c connected to Cusing a minimum weight edge.
For veV-C define

as if no G . v) edge.
He C

weight (v)= min [W(e)(e= (u .
v) 3

,
ne) otherwise

Priority Queue

Maintain a set V-C as an array in heap order according to the weight.
ExtractMin: remove and return vertex with min weight.
Insert(v

, weight(v)) : insert vertex with weight (v)

Delete(v) : delete v from PQ

Go through AdjIr]
Find endpoints in C where (n, v) = weight() ,

utC

Insert new vertices in PQ
· Not in PQ yet , but will now be
· endpoints in C . w. v) = weight (v)

,
choose I to be the tree edge

ignore, any others in C

·

XeC , not in PQ -

add in PQ

· X & C ,
but in PQ-check to update weight(x)

- Need a data structure to store where v is in PQ so that finding it takes O(1).

Create array CI.... n ]

T[v] =

Gilocation" of vin heap

if VEV- C

otherwise

Analysis
· I ExtractMin to add each v to C

· Scun Adj[v] to finde = Cu ,
v1 with W(e) = weightle) , add to MST.

Need to update/reduce weight of vertices V. St
.

(v
,
v) with v'-> V-Ci

Size of heap O(n)

- n-1 ExtractMin n . Ollogn) delete and insert
O(m) reduce weight-
· Total O(mlogn)



·
Does MST always work ?

&
35

e



Dijkstra (1959)

Input: graph or digraph G + (V,E) , W: E- Reo ,
seV.

Output: shortest paths from s to every other vertex v.

Idea: grow tree of shortest paths starting from s.

General Step :

We have a tree of shortest paths to all vertices in set B.

Initially B = 553.

Choose edge (x, y) , Xe B
. yB to minimize dls

.
x) + w(x

, y) ,
where d(s,

x) is known minimum distance from s to X

Call this minimum distance d. d(s
, y) = d

Add (x
,y) totree t(y) = Xparen

Greedy (in a sense) : always add vertex with min weight distance from S.

Claim: I is the min distance from sto y.

Proof

Any path it from s to y consists of

W

Ti - Th·2·
*

-
go

U
·

y

T1 .: initial part of it in B (s-u)

e = (u
.v) + E , ueB , veB (first edge leaving B).

Th : rest of path
we chose the minimum

w(n) = w() + w(n, v)=(u) + w(n, v) = d = d(s,y)

Proof breaks if negative weight edges exist.

By induction on 1131 the algorithm correctly finds dis
.
v) for all veV-

Implementation

Keep "tentative" distance d(v) EveB, ·-div) = min weight path from stor with all but I edge in B.

·

D
PQ/heaps: similar to Prim's

Stored-values in a heap of size n.

Modify a d-value : OClogu) to adjust heap

Runtime: O(nlogn) + 0 (mlogn) -> O(mlogn)
ExtractMin Adjust Heap



Single Source Shortest Paths: Bellman-Ford

The original application of dynamic programming.
Edge weights may be negative but no negative weight cycle is allowed.

di(v) = weight of the shortest path from sto r using <; edges.

d,N) = Guyis,
V= S

v) (s . v) -E

otherwise
can be merged ?

di+ (v) = min San die , sus + wou
Y using at most i-l edges

similar to 0-1 knapsack ?using at most i edges
A otherwise

We want dn-, (v)
= n-1 is the max possible shortest length.

Runtime: O(n - (n+m)



All Pairs Shortest Paths - Floyd-Warshall

Step i-1 : intermediate path may contain v, ....,
Vi-

-&

Vi

2 choices : use vi or not

if u= v

Do[n, v] S w(u
,
v) use (n

,
v) e E

.=
seotherul

Dilu. v] = min Di-1[u . i] + Di+ [iv] using ViS Di-1 [u, v] not using Vi

for i from 1 to n do :

for ut V do

for v e V do

Dilu
, v] = minSDi-1[u,

v]
,

Di- [u, i] + Di-s[iv] 3

Analysis: O(u3) for both runtime and space.

Note: Can reduce the space usage to O(n't

for i from 1 toa do:

fora from 1 toa do

for v from 1 to a do

DIu, v] = minED[ur]
,
D[u, iJ +D[in] 3

.



Exhaustive Search

Alternative options
approximations - often know error factor

, quality of solution is based on error factor.
heuristics - often okay ,

but no guarantee on quality or runtime.
exact solution - very expensive

Example - Subset Sum

· No known polynomial time algorithm
· Explore all subsets

Backtracking to Explore allSubsets

C: configuration c= (5= 53 , R = 91 . . .

., n3)
S : state

R : remaining items I in , out

c = (S = 913
,

R= [2, . . . n3) C = (5=53
,

R = [2
.

. . .,
u3)

e in 2 out
2 in e out

91, 23 , [3, . . ., 4] 913 , 93 , . . ., n3

-

height = n

#nodes - 0(2") # subsets of E1 , ..., n] .

# leaf nodes = 2" (when R= &3)

&



Backtracking to explore all permutations

P= 0,

R = El .
...,

n3
P = permutations so far

I first u first
R=

remaining elements a first 3 first -

P = 91] ,
p= 923

, p= 933 P= (n3

R = S, , . . .. n3191] R= 91 . . .

., n31923 R= [1. . . . . n 31933 R= 91, .... n3194]

2 second --- n second

P= 91
,
23

,
P= (1 , n3

- -
- ..... ...... ---

R= 91 . . . ..
43191 . 23 R = [1 , . . ., 43191 . 43

height= n # of permutations of [, ...,
u3.

-

# leaves = u !

Maintain : w = Wi and r: wi

If w= W, problem is solved
If w > W , we have a dead-end.
If r+ w < W , we have a dead-end.

Runtime: Ok")
, better than #P if W = <"

Anw)

Backtracking on Graphs.

~ edges to exclude
C = (N , X) NnX = 0

↓

edges to include

General Algorithm

Let A be the set of active configurations.

while A - * do

C - remove from A

Explore C

if C solves the problem then we are done.

if C is a dead-end then discard it
else expand C to child configurations (

..... Ct (by making choices
At AUSCi]



Branch-and-Bound

Let A be the set of active configurations
Initially A starts with a single configuration
Best-cost-c

while A = * do

CI remove "most promising" configuration from A.

Expand C to G
. . . ..

Ct (by making additional choices) // Branch
for i from 1 to t do :

if Ci solves the problem then

Best-cost = min (Best-cost , cost((i)
else if Ci is deadend then discard CiA

else if lower-bound((i) < Best-cost then add G to A / Bound

Branch-and-Bound for TSP

Necessary Conditions (used to detect dead-ends)

· E-X is biconnected

N has 2 edges incident to each vertex

N contains no cycle (except on all vertices)

Branch

C= (N , X)
e oein) & t

c= (NUSE] , X) C= (N
, XUpe))

Claim: Any TSP four is a 1-tree.

↑ & & ↑

I-tree
&

&

I · O ·
I

~ TSP
& B

&

&

If the min-weight-tree is a TSP
,

then the TSP tour is optimal

Given a configuration (N,X)
,

we can efficiently compute a minimum weight1-tree.
that includes edges in N and discarding the edges in X.

assigning a weight of o

Find MST on vertices 2
. .. n

.

Add the two minimum weighted edges incident to vertex 1.

Then compute the weight of the 1-tree (sum real weights)



Hamilton Path/Cycle

Construct G'st
.

has a Hamilton Path if G has Hamilton

Cycle
Idea 1 : add one edge to get G' ; don't know which edge

G'
7

⑨
·

⑨

⑨
⑨

We will need to test between every pair of vertices
,

not a many-one reduction

Idea 2: add one new vertex adjacent to all vertices in G.

G -

-⑮

-·
v·

⑧-

Runtime: n+ 1 vertices
, m+ nedges -> 2n + m+

G' is linear in size compared to G.

Correctness

G has a Hamiltonian Path if G' has a Hamiltonian Cycle

Proof :

(E) Suppose G has a Hamiltonian Path u.... Un

Then G' has a Hamiltonian Cycle Vu, ... niv

(E) Suppose G has a Hamiltonian Cycle.
Then remove v to get a Hamiltonian Path

Note

This is a special case of reduction
,

called a many - one reduction.

The subroutine is called only once.



Equivalence of Optimization and Decision Problems

Maximum Independent Set.

An independent set is a set of vertices st
. No two are joined by an edge in G.

Opt: Find max IS.

Dec: Given integer K
,

is there an 7S of size <K ?

Dec < p Opt
use algorithm forOpt to solve Dec.

Opt =
p Dec

· a bit harder,

Example - IS

· Find the max kopt by testing K= 1 , 2, ..., n using Dec
.

Then find the set with size Kopt
.

Delete vertex one at a time
· If Max-IS(G - v) = Kopi

,

then G + G- V
.

Repeat until no vertex can be deleted

Runtime : polynomial (assuming algorithm for Dec takes polynomial time.)



Certificate/Verification

For decision problems ,
not optimization problems.

TSP (Decision) ->> NP

Theorem : TSP is in NP.

Certificate: a permutation ofa vertices

Verification:

1 check if it is a permutation of the nodes

2
. check edges exist in G

3
.

check edges form a cycle.
4

. Sum of weights = K.

Verifiers need to be in polynomial time.

XXpY

· X reduces to Y
· "Vis easier than Y" , reducing to harder problem.
Suppose we have a polynomial time subroutine for Y

,
create a polynomial time algorithm for X.



3 SAT <
p Independent Set

Theorem: Independent Set is in NP

Reduction

Construction (x
, V Xa VXs)

One of X1
,

X2 and Xs must be true

Graph G : ⑭
X200X3

Choose I vertex for the Independent Set

Example

(x, VxaV <x3)1 (x
, V [X2VX3)

o
Xi

o
Xi

prevent choosing both x and X.

O O O 0
X37x3 X2 TX2

-
In general ,

to prove a problem Z is NP-complete
1. Prove 2 in NP.

2. Prove XpI for some known NP-complete problem X.

since we knew X is NP-complete,
we don't have a polytime algorithm for it,

so we can construct a contradiction
.



dique

A dique is a subset V of V where every pair of vertices is joined by an edge. a complete subgraph.

Input : an undireted subgraph G = (V, E) and an integerk

Output: Does G have a dique of size = 1 ?

Theorem: Clique is in NP.

Certificate : a set of vertices I do not use "a set of vertices that forms a dique ; needs to be general
"

Verifier :

1. each v is a valid vertex in G.

2
. edges between all pairs of C exist in G.

3. Idzk

Theorem: Clique is NP-complete

Proof : 1
. Clique is in NP

2
. [A known NP-complete problem) =

p Clique
Independent Set

Reduction

Suppose we have a polytime algorithm for Clique , give a polytime algorithm for Independent Set
G has a clique of size = 11 Iff G has an IS of size =K *

return dique (G' = Go , k = k)

z completement graph.
Runtime: Polynomial
Correctness: Known property *

Proof ofA

(f) Let O be a dique in G with 142k
,

then since C is complete
C (the subgraph in G' with the same vertices) has no edge between any two vertices.

(E) Let Ibe an IS in G" with 1C = K
,

then since C has no edge between any pair of vertices,

C has an edge for every pair of vertices in G ,
so C is a dique in G.



Vertex Cover

A vertex cover is a set VIEV such that every edge (n
.v) - E has neV' or veV (or both

Theorem: Vertex Cover is NP-complete

Proof : 1
.

VC is in NP

2. [A known NP-complete problem] =
p

VC

Independent Set

Reduction

Suppose there is a polytime algorithm for VC
, give a polytime algorithm for IS.

Construct G = G
,

K = n-K
.

Runtime : polynomial
Correctness : G has a VC with size Kiff G' has an IS of size = K

() Let V be a VC with size K = n-K
.

Then G-V1 is an IS of size = K.

Why ? Each veG-V' is not in V => no edge between them.

(E) Let V be an Is with size : K
.

Then G-V' is a VC of size K:

thWhy? Let (n.
1) -> Ebe any edge ,

then either ut VandveG-V' or do uret

Hence G-V' is a VC .



3-SAT <
p Directional Hamiltonian Cycle

Input : Boolean formula F clauses ( . . . . ,
cm on variable v, .....

In

Output: Is there an assignment that satisfies F?

Reduction

Construct directed graph G such that F is satisfiable iff G has a directed Hamilton Cycle
Idea: For each variable Xi ,

there is a part of G /"variable gadget") that chooses whether Xi is true or false.

u - true path
- >"

Xi 00000 O - false path--YYY)
-

We need a gadget like this for all variables.



Directed Hamiltonion Cycle <
p Hamiltonian Cycle

Input : directed graph.

Suppose we have a polytime alg for (undirected) Ham Cycle.
=> need to convert graph G into undirected graph G :

--
&* i-

Why isr required ?



3-SAT < p Subset Sum

Subset Sum

· items 1
... n

· weights w ,
...

Wh

· target W

Reduction:

Encode the into of boolean formula F into the "bits" of the numbers we use for weights.

Xi X2....
... Xn GC

. .

... Cm

XI I O

TX1 I I

X2 & ⑧ I encode clause into here

7X2 I
-

..

O EX. C = (x
,
V XzV TXn)

· =

Xn O
-

,

I
O

7Xn I I

ISi 2

I

S O 2
-

O
i

Su I

Sun O
..

2

Subset :

weights interpret each now as a number.

choose a subset of weights
· choosingrows

use base-lo to avoid carry over

both sit Si

↓ ↓ ↓
1 + 3 or 2+ 2 or 3 + 1

Target:

(satisfied + slack)-
1....

-
44

un In can only choose one between Xi and LXi
,

for i = 1 , ... in
N u-
↑

Purpose ofslack : target cannot be variable , need to be fixed.



Approximation Algorithms

Heuristics - there might be no guarantee on the runtime or the quality of the solution

Approximation algorithms
-near optimal solution

- polynomial time and a guarantee on the quality of the solution.

-for a minimization problem, might guarantee
The cost of the approximate solution : (

The cost of the optimal solution: c
*

Approximation ratio of an approximate algorithm : p(n).
- maximization problem : c** e(n) C

-minization problem : Cf(n) *

- In both cases , f(n) : 1
.

Vertex Cover

Optimization problem : find a minimum size vertex cover

Greedy Algorithm

c + d

E' GE

while E = &

v -> vertex with maximum degree
c = CUEv]

E-E'-sedges covered by v'3

return C
.

Runtime : polynomial
Approximation factor: Ollogn) not constant

&ob · O
C

-YI &otL
d

·

e

C = Pc d.
e3

,



Greedy Algorithm 2

APPROX-VERTEX-COVER

c = 0

E = GE

iwhile E' + 0 :
bO O C
-

·Let (n, v) -> E be any arbitrary edge of E' -- tL
2 Cs Eu . v3

dO
Il ⑧

e

E't (1 every edge incident to either n or v3.
return C A = <(b , c) , (d, e) 3

C = 9b, c
,
d, e3

.

Runtime: polynomial
Approximation factor: 2

Theorem. APPROX-VERTEX-COVER is a polynomial-time 2- approximation algorithm.

Proof: Let A denote the set of edges chosen by the greedy algorithm.
In order to cover the edges in A

, any vertex cover
, including optimal cover C*

,
must include at least one endpoint of each edge in A.

We have IC* 1 = 1A) on the size of an optimal vertex cover.

Each iteration picks an edge for which neither of its endpoint is already in C
,

so we have (c = 21A)

Therefore
,

we have 1c*12 (A) => e(c+ = 21A) = (c) => 1d = ec*

Note:

->
not a proper subset of any other matching

A is a maximal matching of G.

IAI gives a lower bound on the size of a vertex cover.



TSP Approximation

Endidean TSP

For complete graphs on points in the plane
· Weight is theFudidean distance between the two endpoints.

-/ ⑨

M
·

- ⑧
1

MST walk? I shortcut (TSP tour)&EX M

O-
· skipped

M① Fin ~
Hedges in MST

② Take a tour of MST O(u + n - 1) = 0(n)
: avoid repeating vertices

③ Take shortcuts = TSP four

-shortcuts are shorter (triangle inequality
" the weights are Euclidean distances

APPROX-TSP - Tour (G , c)

1. Select a vertex r-> G
.V to be a "root" vertex

2. Compute a MST T for G from root r

using MST- Prim (G
,
c. r)

3. LetH be a list of vertices
,

ordered according to when they are first visited.

4 return H

Runtime: Even with a simple implementation of MST-Prim , the running time of APPROX-TSP-TOUR is OCnt.

Theorem : APPROX-TSP-TOUR is a polynomial 2-approximation algorithm for the TSP problem with triangle inequality.

Proof: Let H be the hamiltonian cycle. Let H* be the optimal hamiltonian cycle.
Let T be any MST

We have wHHY > w(T)
,

since if we remove an edge from H
,

we get an MST.

We also have w(H) < 2w(T) since we might skip some vertices during the MST walk.

The total weight is reduced if we do so because of the triangle inequality.

Now , we have zw(T) < zw(H)* and so w(H) < zw(H*)

The general isp

If PENP ,
then for any constant+ : 1 ,

there is no polynomial-time approximation algorithm with approximation factor f.



Show a Decision Problem is in NP

Define a certificate C- polynomial size

Define a verifier (I
,
C)

- polynomial time in terms of bits in input.

-give an algorithm for each step.

In terms of the bits

Givena numbers u and m.

n is represented using log n bits

·

m is represented using logm bits

AdditionOmaxlognlogm polytea

0-1 knapsack
·

items 1 ... n

weights W, . . . . Wh

values v, , . . .. Un

Capacity W - need logh bits

· W = zlogah exponential in the # of bits.

· pseudopolynomial



Circuit-SAT <p 3-CNF-SAT

Intuitively circuits and Boolean formulas are the same.
Not polynomial-formula "doubles" in size as we go up a level

n
1

Xu = Xv1 Xu

(convert each node to a variable (

W Y

Reduction (a1b)vGa1b)
-

a= b means (7aVb)1(aV+b)
(7xv VX- 1Xw) = (xnVXv)1(7xuVXw)
(xu v7 (x-1xw)) = (XnV(xv)1(XnVXw)

Convert causes of2 variables into 3 variables :

larb) = (aVbVXnew) 1 CaVbVTXnew)



NP

P NP-complete

XXpY <p]

↓o first upc new upc

SubsetSum <po-1 Knapsack
I &

known NPC show this is NPC

Assume we have a polytime algorithm for 0-1 knapsack.
Give a polytime algorithm for Subset Sum.

Reduction

0-1 knapsack Subset Sum

items 1 , ... n items / , . .

..
n

W,
. . ...

Wh W, . . .,
Wa

VII
...,

Un W, . . .,
Wh

W W

K W

Runtime: instance of 0-1 knapsack is 2 X size of instance of Subset Sum.



First NP-Complete Problem

-
st NPC

FYENP , Y<pX
.

Then Xp 2
,

where z is a new NPC problem.

Circuit Satisfiability

A circuit C

sources/inputs (variables or 0.
1) - no incoming edges.

one sink/output - no outgoing edges.
internal nodes are 1 , V,

<

Theorem: VYENP, Y<p Circuit-SAT

For every Y in NP
,

there is an algorithm that maps any input y to a circuit (

Decidability

NP

P NP-complete NP-hard =
include optimization problems.

PENP EPSPACE EXPE Decidable
/

polynomial space runtime O(U)

known : P * EXP

Unknown : Everything else.


