
Thread
A thread is a sequence of instructions•
A normal sequential program consists of a single thread of execution•
In threaded concurrent programs:

Multiple threads of execution, all occurring at the same time○

Threads may perform the same task, or○

Threads may perform different tasks○

•

Express concurrency
Multiple programs or sequences of instructions running, or appearing to run, at the
same time

○

•

Why Thread?
Resource utilization

Blocked threads give up resources to others○

•

Parallelism
Multiple threads executing simultaneously○

•

Responsiveness
Dedicate threads to UI○

Other to loading/long tasks○

•

Priority
Higher priority - more CPU time○

Lower priority - less CPU time○

•

Modulization
Organization of execution tasks○

•

OS/161 Thread Concurrency
A thread can create new threads using thread_fork•
All threads share access to the program's global variables and heap•
Each thread has its own stack

Private to that thread○

•

A thread is represented as a structure or object in the OS•

OS/161 Thread Interface
Create a new thread:

int thread_fork(
const char *name,
struct proc *proc,
void (*func) (void *, unsigned long),
void *data1,
unsigned long data2,

)

•

Terminate the calling thread:
void thread_exit()

•

Voluntarily yield execution:
void thread_yield()

•

Notes about thread_yield•

Summary
Saturday, October 8, 2022

 Threads Page 1

Notes about thread_yield
Mainly used in kernel functions○

Rarely used in user programs○

No guarantee that CPU will be given up○

•

Timesharing and Context Switches
Timesharing

Each thread gets a small amount of time to execute on the CPU○

When expired, a context switch occurs○

Threads share the CPU, giving the user the illusion of multiple programs running at
the same time

○

•

Context switch
The switch from one thread to another is called a context switch○

During context switch

Decide which thread runs next▪

Save register contents of the current thread▪

Load register contents of the next thread▪

○

•

thread_switch and switchframe_switch
switchframe_switch: the low level assembly function called by thread_switch

It only needs to save the callee-save registers (s0-s7)○

Steps:

Allocate stack space for saving 10 registersi.
Save ra, gp, s8/fp and s0-s7ii.
Save sp to a0iii.
Load sp from a1, switching to the stack of the new threadiv.
Restore s0-s7, s8/fp, gp and ra, which stores the address of thread_switch of
the new thread

v.

Return vi.

○

•

thread_switch: the high level C function that calls switchframe_switch
It only needs to save the caller-save registers (t0-t7)○

•

 Threads Page 2

What causes context switches?
thread_yield

Thread voluntarily allows other threads to run○

•

thread_exit
Thread terminates○

•

wchan_sleep
Thread blocks (sleeps)○

•

Preemption
Thread involuntarily stops running○

•

Thread states
Running

Currently executing instructions○

•

Ready
Ready to execute instructions but is not○

•

Block
Not ready

•

 Threads Page 3

Not ready○

Waiting for resource○

OS/161 Thread Stack after Voluntary Context Switch

Timesharing and Preemption
Scheduling quantum

A limit on CPU time for each thread
•

 Threads Page 4

A limit on CPU time for each thread○

An upper bound on how long a thread can run before it must yield the CPU○

What if a running thread never yields, blocks or exits when the quantum expires?○

Preemption
Forces a running thread to stop running, so that another thread can have a chance to
run

○

Normally accomplished using interrupts○

•

Interrupts
An event the occurs during the execution of a program•
Caused by system devices (hardware)•
Hardware automatically transfers control to a fixed location in memory, which contains a
procedure called an interrupt handler

•

The interrupt handler
Creates a trap frame to store the thread context at the time of the interrupt (every
register is saved)

○

Determines which device caused the interrupt○

Performs device-specific processing○

Restores the saved thread context from the trap frame○

•

OS/161 Thread stack after an Interrupt

Preemptive Scheduling
Uses the scheduling quantum to impose a time limit on running threads•
If a thread has run too long•

 Threads Page 5

If a thread has run too long
The timer interrupt handler preempts the thread by calling thread_yield○

That thread changes state from running to ready, and is placed on the ready queue○

The runtime starts at 0 when it is running again○

•

OS/161 threads use preemptive round-robin scheduling•

 Threads Page 6

Spinlock
NEVER sleep when you own a spinlock•
Everyone else might try to acquire the spinlock but only you can release that spinlock•
Interrupts are disabled and deadlocks happen•

ARM Synchronization Instructions
LDREX and STREX should be used as close as possible to acquire context change•
If STREX failed return TRUE to keep running ARMTestAndSet•
If STREX succeeded, return the original value at addr, can be TRUE or FALSE•
ARMTestAndSet returns FALSE iff the lock was free and we acquired the lock, causing
Acquire to break

•

MIPS Synchronization Instructions
Similar to ARM•
Instructions used are called ll and sc•

Spinlocks
Shouldn’t be used for a large amount of time•
Inefficient•
Use busy wait and disable interrupts•
The owner is the core itself, not a thread•

Locks
Locks have names, just for documentation / debug, not guaranteed to be unique•
If lock unavailable after calling lock_acquire, go to sleep instead of busy waiting•
Can be used to protect larger critical sections without being a burden on the CPU•
A type of mutex•
Have owners•

Wait Channels
wchan_lock uses a spinlock•

Semaphore
A synchronization primitive that keeps a count•
P: decrement the if it is greater than 0•
V: increment the value•
P and V are atomic•

Lecture 6 - Spinlock, Lock and Semaphore
Tuesday, September 27, 2022

 Synchronization Page 7

How do you make sure lock_acquire and lock_release are atomic?
Using spinlocks•

Semaphores
No ownership•
Does not matter as long as you use it correctly

Only call V after having called P○

•

When used as a barrier semaphore
Similar to pthread_join, but different since you don't specify which thread to wait for○

•

Condition Variable
Wrapper for wchans•
It has no idea what condition it is keeping•
Programmers must have a lock when using condition variables•
CV assumes the lock has already been acquired, then release the lock, go to sleep, and
when the condition is satisfied, it will be waken up and reacquire the lock

This is all achieved by cv_wait(cv, lock)○

•

How does it wake up?
Another thread calls cv_signal(cv, lock) when the condition has been satisfied○

Can also call cv_broadcast(cv, lock) which wakes up all threads waking for this
condition to be true

○

•

volatile int foo;
lock mutex;
cv foo10and50;

void bar (void *p1, unsigned long p2) {
lock_acquire(mutex);
while (!(foo > 10 && foo < 50)) {

lock_release(mutex);
thread_yield();
lock_acquire(mutex);

}
}

Instead of voluntarily yielding, it's probably better to go to sleep when you're waiting condition
to be true.

Conditional Variable
Why use a while loop?

When a thread wakes up. it does not start running immediately, but in a ready state.
Other threads can mutate the global variable associated with the condition again

○

•

Volatile
Write back a global variable immediately, instead of caching it in a register•

Lecture 7 - Condition Variable
Thursday, September 29, 2022

 Synchronization Page 8

Race Condition
A race condition is when the program result depends on the order of execution•
Occurs when multiple threads are reading and writing the same memory at the same time•
Constants and memory that all threads only read, do not cause race conditions•

Atomic test-and-set
Atomic x86 (and x64) xchg instruction•
xchg src, addr
src is a register, addr is a memory address•
Swaps the values stored in src and addr•
Logical behaviour:•

X86 Lock Acquire and Release with xchg

X86 Lock Acquire and Release with xchg
If xchg returns true, the lock was already set and we continue to loop•
If xchg returns false, then the lock was free, and we have required it•
This construct is known as a spin lock

A thread busy-waits in Acquire until the lock is free○

•

ARM Synchronization Instructions
Exclusive load (LDREX) and exclusive store (STREX)•
Act as a barrier•
Must be used together•
LDREX

Loads a value from address addr○

•

STREX
Attempt to store a value to address addr○

Fail to store value at addr if addr was touched between LDREX and STREX○

•

It is recommended to place these instructions close together
Lower change for context switches○

•

Summary
Tuesday, October 11, 2022

 Synchronization Page 9

Spinlocks in OS/161
A spinlock is a lock that repeatedly test lock availability in a loop until the lock is available•
Actively use the CPU while busy-waiting•
Interrupts are turned off•

Locks in OS/161
A thread that calls lock_acquire blocks until the lock can be acquire•
Used to protect larger critical sections without being a burden on the CPU•
A type of mutex•
Have owners•

 Synchronization Page 10

Process
Execution environment for running programs

Address space○

Threads○

Virtualized resource - heap, stack○

File and socket descriptors○

•

Isolate from other programs in other processes•

Process Structure
Name

For debugging purposes○

Not a unique identifier○

•

Spinlock
For synchronization purposes○

•

Thread array
Array of all threads of this process○

•

Address space
Virtual memory for this process○

•

Current working directory•
Console•

Process Management Calls
fork

Create a new process with a separate copy of code and address space○

•

_exit
Terminate the calling process○

•

waitpid
Similar to pthread_join○

Wait for another process to finish, given its pid○

Get the return value (exit status) of that process○

Get information about how that process is terminated○

•

CPU Cycle
Correct order of fetch/execute cycle

Fetch instruction○

Increment PC○

Execute instruction○

•

Note that the order is important•

fork
Creates a new process (the child) that is a clone of the original (the parent)•
Return both in the parent and child•
Different return values for parent and child

Parent gets child's pid○

Child gets 0

•

Lecture 8 - Processes and the Kernel
Tuesday, October 4, 2022

 Processes Page 11

Child gets 0○

After fork, both parent and child execute copies of the same program
Exact copies but separate from each other (do not share the address space)○

May diverge later (e.g. through an if-else statement)○

•

execv
Does not return•

 Processes Page 12

execv
Destroys the current program's virtual memory•
Initialize with code and data of the new program and start running it•
Does not return to the previous process since it has been destroyed

Only return when it failed to start running the new program○

•

Does not change parent-child relationships•

System Call
The OS needs to protect critical parts from malicious programs•
System calls allow user programs to ask OS to perform certain tasks

Create, destroy, manage processes○

Create, destroy, read, write files○

Manage file system○

Manage virtual memory○

•

Unprivileged vs. Privileged code
CPU has different modes (privilege levels or rings)•
Ring 0 - highest security

Kernel code○

•

How System Calls Work
There are two things that make kernel code run

Interrupts - caused by hardware devices○

Exceptions - conditions that occur during the execution of a program instruction○

•

System calls are special instructions that produce exceptions•
In MIPS, interrupts treated as exceptions

The EX_SYS exception is the syscall○

•

mips_traps
Create a trapframe•
Determine which exception is raised•
If the exception is a syscall, invoke syscall, passing the system call code in the trap frame•

syscall
Get v0, which contains the system call code (callno)•
Check the callno

See which system call the user program wants to execute○

•

Update program counter in the trap frame
Syscall generated an exception so the PC would not update○

Avoid restarting the syscall over and over again○

•

syscall.h contains which system call code is expected in v0 for each syscall•
In MIPS, parameters are expected in a0-a3 •

System Call Stack
Each thread has 2 stacks: user stack and kernel stack•
User stack•

Lecture 9 - System Calls, Multiprocessing
Thursday, October 6, 2022 13:00

 Processes Page 13

User stack
Used while application code is executing○

Located in the application's virtual memory○

The kernel creates this stack when it sets up the virtual address memory for the
process

○

•

Kernel stack
Used while the thread is executing kernel code, after an exception or interrupt○

A kernel structure○

In OS/161, the pointer is called t_stack○

Holds trap frames and switch frames○

•

Inter-Process Communication (IPC)
Processes do not share address spaces. How do they share data?•
Methods used to send data between processes

File○

Socket○

Pipe○

Shared memory○

Message passing/queue○

•

 Processes Page 14

Process
A process is an environment in which an application program runs•
Includes virtualized resources that its program uses

Threads○

Virtual memory○

File and socket descriptors○

•

Created and managed by the kernel•
Isolates from other programs in other processes

Seems to have exclusive access to the processor, RAM and I/O devices when in fact
they are shared

○

•

fork
Creates a new process that is a clone of the parent (the original process)•
Makes a new thread for child•
The address spaces (code, global, heap, stack) are identical at the time of the fork

May diverge afterwards○

•

Returns in both the parent and child•
Different return values from fork

Returns 0 to the child process○

Returns the child's pid to the parent process○

Provides a way to distinguish the child from the parent○

•

_exit
Terminates the process that calls it

A process can supply an exit status code when it exits○

The kernel records the exit status code in case another process waits for it (e.g.
waitpid)

○

•

waitpid
Waits for another to terminate•
Retrieves its exit status code•

execv
Changes the program that a process is running•
The calling process

Destroys the current virtual memory○

Obtains a new virtual memory○

Initializes it with the code and data of the new program to run○

•

These are not changed:
Process ID○

Parent/child relationships○

•

Can pass arguments to the new program, if required•

Example

Summary
Tuesday, October 11, 2022

 Processes Page 15

Line 12: WIFEXITED returns true if the child called _exit()•
Line 13: WEXITSTATUS extracts the exit code•
These two macros are defined in kern/include/kern/wait.h•

getpid
Returns the process identifier (pid) of the current process•
Each existing process has a unique pid•

Example

 Processes Page 16

Line 8:
If execv fails the current program will continue executing○

If execv succeeds the current program will be replaced with argtest

The printf statement on line 8 will not be executed since the code section is also
destroyed

▪

○

•

Line 9: errno is a global variable that holds the value of the last error number•

System calls
System calls are the interface between user processes and the kernel•
Called by user programs•
E.g. fork, execv, waitpid, getpid•

Kernel privilege
Different levels (or rings) of execution privilege•
Kernel code runs at the highest privilege level

Any processor instructions can be executed○

•

Application (user) code runs at a lower privilege level
User programs should not be permitted to perform certain tasks such as

Modifying the page tables used to implement virtual memories▪

Halting the CPU▪

○

Cannot directly call kernel functions or access kernel data○

•

How system calls work
Interrupts

Generated by devices when they need attention○

•

Exceptions
Caused by instruction execution when a running program needs attention○

•

Interrupts
Raised by devices•
Cause the processor to transfer control to a fixed location in memory

An interrupt handler is located here○

•

When an interrupt occurs, the processor
Switches to privileged mode○

Transfers control to the interrupt handler - a part of the kernel○

•

This is how the kernel gets its execution privilege•

 Processes Page 17

Exceptions
Conditions that occur during the execution of a program instruction•
Detected by the processor during instruction executions•
When an exception occurs, the processor

Switches to privileged mode○

Transfers control to the exception handler - a part of the kernel ○

•

In MIPS, everything (including an interrupt) is an exception•

System call
The kernel

Expects the application to place the appropriate system call code (in v0 for OS/161 on
MIPS processor)

○

Checks this code to determine which system call○

•

The codes and code location are part of the kernel's Application Binary Interface (ABI)•
Arguments go in registers a0, a1, a2, a3

Result success/fail code is in a3 upon return○

Return value or error code is in v0 upon return○

•

System calls are expensive
Call print 10000 times to print one character at a time v.s.○

Call print once to print 10000 characters at a time○

•

User and kernel stacks
User (application) stack

Used while the thread is executing application code○

Holds the stack frames for the application's functions○

Created by the kernel when it sets up the virtual address space for the process○

•

Kernel stack
Used while the thread is executing kernel code

i.e. after an exception or interrupt▪

○

A kernel structure○

Holds stack frames for the kernel functions○

Holds trap frames and switch frames○

•

Exception handling in OS/161
An application calls a library function

Puts the system call code in register v0○

Raises an exception○

1.

common_exception
Saves the application's stack pointer○

Switch the stack pointer to point to the kernel stack○

Saves application state (including the pc) in a trap frame on the kernel stack○

Calls mips_trap, passing a pointer to the trap frame as an argument○

2.

mips_trap
Determines the type of exception by looking at the exception code

Interrupt? Call mainbus_interrupt▪

System call? Call syscall (kernel function)▪

...▪

○

3.

Do the work to handle the exception4.

 Processes Page 18

Do the work to handle the exception4.
common_exception

Restore application state (including the application stack pointer) from the trap frame
on the kernel stack

○

Go back to the application instruction that was interrupted○

Switch back to unprivileged execution mode○

5.

Why have system calls?
Ensure that the kernel is protected and have the highest privilege•
Keep the kernel isolated from applications•
Allow the application processes to use the services of the kernel•

Multiprocessing
Having multiple processes existing at the same time•
All processes must share the available hardware resources

Sharing is managed by the OS○

•

The OS ensures that processes are isolated from one another•

Inter-Process Communication (IPC)
A family of methods used to send data between processes•
File

Accessed by both processes○

•

Sockets
Network interface between processes○

•

Pipe
Unidirectional data transfer from one process to another via OS-managed data buffer○

•

Shared memory
Block of shared memory visible to both processes○

•

Message passing/queue
A queue/data stream provided by the OS○

•

Summary: System Calls
Implemented by putting a system call code in a particular register (in v0 for OS/161 on
MIPS) then raising an exception with the assembly language instruction syscall

•

The processor jumps to a fixed location that has the exception handler•
The exception handler

Creates a trap frame to save application state1.
Determines that this is a system call exception2.
Determines which system call is requested3.
Does the work of the system call4.
Restores the application state from the trap frame5.
Returns from the exception6.

•

Example diagram
A system call (for fork) followed by a timer interrupt•

 Processes Page 19

 Processes Page 20

Dynamic Relocation
Accessing a virtual address larger than the limit for the process

Raise an exception○

•

Otherwise add the relocation register to the virtual address asked for to get the physical
address

•

Efficient but suffers from fragmentation•

Fragmentation
External

Empty spaces between contiguous blocks memory○

•

Internal
Empty spaces within blocks of memory○

•

Lecture 11 - Intro to Virtual Memory
Thursday, October 20, 2022

 Virtual Memory Page 21

Approach 1
MMU has a relocation register and a limit register for each segment•

Approach 2 - Maintain a segment table
MMU will only have 2 registers

Segment table length register - stores the number of segments○

Segment table base register - stores a pointer to the beginning of the segment table○

•

Pros
Store more information than Approach 1, e.g. read/write protection○

More flexible than Approach 1○

•

Steps:
Check given segment number1.
Index into the segment table and find the physical address2.

•

Segment problems
Still suffers from fragmentation•

Paging: physical memory
External fragmentation is impossible•
Minimize internal fragmentation•
Smaller "segments"

Also need a table○

•

Page table
Valid bit

Indicate whether a paged is actually allocated to a process○

•

Read/write bit•
MMU only needs one register to store a pointer to the beginning of the page table•
Example (page size =)

Lower 12 bits for page offset○

Higher k bits for page number (k = # virtual address bits - 12)○

•

Page table address translation
of bits for offset = log(page size)•
of PTEs = maximum virtual memory size / page size•
bits for page number = log(number of PTEs)•

Multi-level paging
Split the page table into multiple levels•
A large, contiguous table is replaced with multiple smaller tables

Each fitting onto a single page○

•

Lecture 12 - Segments, Paging
Tuesday, October 25, 2022

 Virtual Memory Page 22

Multi-level paging
The first page table becomes a page directory

Stores pointers to other page tables○

E.g. first entry stores a pointer to a page table containing addresses 0…999○

•

Valid bits indicate whether at least one page in the range of pages are allocated•
We can have more than two levels•

A tree of page directories / tables
The root is the first page directory○

The leaves are the actual page tables○

•

Accessing page table is •
Time-space trade off

Larger time complexity○

Less space usage○

•

Multi-level paging address translation
E.g. 0x502C on slide 26

5 = 0101 in binary○

Split 0101 into 01 and 01○

The first 01 means access index 1 of the root directory, which points to Table 2○

The second 01 means access index 1 of Page Table 2 to get the frame number 0x12○

Result: 0x1202C○

•

E.g. 0x70A4 on slide 26
7 = 0111 in binary○

Split 0111 into 01 and 11○

The 01 means access index 1 of the root directory, which points to Table 2○

The 11 means access index 3 of the Page Table 2 to get the frame number 0x13○

Result: 0x130A4○

•

Note: do not forget to check the valid bits•

Multi-level paging (continued)
MMU only needs one page table base register

Points to the root page table directory for the current process○

•

Size of page table = page size•

In class problems
V = 64, page size = , PTE = •
Each individual page table, at each level, must fit in a single frame•
How many bits of each virtual address are needed to represent the page offset?

log(page size) = 20○

•

What is the maximum number of entries in an individual page table?

•

How many pages can be at the bottom level?
We needed pages the number of page tables we need is

•

Lecture 13 - Multi-level Paging
Thursday, October 27, 2022

 Virtual Memory Page 23

We needed pages the number of page tables we need is

○

64 - 20 = 44 remaining bits to be used for indices

○

Suppose that a particular process uses only 128 MB (2^27 bytes) of virtual memory, with a
virtual address range from 0 to 2^27 - 1. How many individual page tables, at each level,
will be required to translate this process' address space?

 pages used○

One page table needed at the bottom level○

 = 3 MB used for page tables○

•

Roles of the Kernel and the MMU
Kernel

Manage MMU registers during context switch from a thread in one process to a
thread in a different process

○

Create and manage page tables○

Manage (allocate/deallocate) physical memory○

Handle exceptions raised by the MMU○

•

MMU (hardware)
Translate virtual addresses to physical addresses○

Check for and raise exceptions when necessary○

•

Translation Lookaside Buffer (TLB)
Motivation: want to cache the page tables•
TLB miss - access a page table that has not been loaded in to the cache•
Only store PTEs, not page tables•

Midterm Range
Everything up to single-level paging•

 Virtual Memory Page 24

TLBs
Small, fast, dedicated cache of address translations•
The MMU now does not need to know the layout of the page tables since it only reads TLB
entries

•

The OS has more freedom to decide how to store the page tables•
Much faster than accessing memory•
Issue

TLB entries for one process need to be flushed before switching to another process○

They do not need to be flushed if a new thread is added (since they share the same
address space)

○

•

Software-managed TLB
MMU only looks at the TLB; raises an exception upon TLB miss•
TLB hit and TLB miss

Similar as cache hit and cache miss○

•

Paging conclusion
Does not introduce external fragmentation since every allocation is the same size•
Multi-level paging reduces the amount of memory required to store page-to-frame
mappings

•

TLB misses are increasingly expensive with deeper page tables
A TLB miss for a three-level page tables requires three memory accesses○

•

Lecture 14 - TLB
Tuesday, November 8, 2022

 Virtual Memory Page 25

Coremap
Stores which frame is in use and which process is using it•

OS/161 Memory
The first 2GB of the virtual memory belongs to user•
The rest belongs to kernel•
MMU can

Check if a user is trying to access kernel memory when we're not in privileged mode○

Use different translation methods based whether an address is a user address and
kernel address

○

Use direct relocation for kernel addresses○

•

kseg0 and kseg1 use direct relocation; maps to the first 512 MB of memory
E.g. 0x8500 0000 - 0x8000 0000 = 0x500 0000 in physical memory○

E.g. 0xA001 0A80 - 0xA000 0000 = 0x10A80 in physical memory○

•

Problem
kseg0, kseg1 and user can map to the same physical address○

•

In-class problem
Physical address: 0x0111 3FA0

kseg0: 0x8111 3FA0○

kseg1: 0xA111 3FA0○

User: 0x7FFF EFA0○

•

Exploiting secondary storage
On-demand paging

Some pages are not in memory, but in disk instead○

•

Resident set - the set of virtual pages present in physical memory•
Present bit - track which pages are in physical address•
We should not put pages that are not present in TLB•

Lecture 15 - ELF, Kernel Memory
Thursday, November 10, 2022

 Virtual Memory Page 26

FIFO page replacement policy
Replace the page that has been in memory the longest•
Simple policy, but not necessary the best one•

Optimal page replacement
MIN: replace the page that will not be referenced for the longest time•
Requires knowledge of the future•

Locality
Temporal locality: programs are more likely to access pages that they have accessed
recently than pages that they have not accessed recently

•

Spacial locality: programs are likely to access parts of memory that are close to parts of
memory they have accessed recently

•

Least Recently Used page replacement policy
Replies on temporal locality•
In practice much better than FIFO•

Clock Replacement Algorith
One of the simplest algorithms that exploits the use bit•
A victim pointer that cycles through the page frames•
Moves whenever a replace is necessary•
OS keeps the victim pointer•
MMU sets the use bit upon access•

Lecture 16 - Page Replacement Algorithms
Tuesday, November 15, 2022

 Virtual Memory Page 27

Why have virtual address
Provides each process with the illusion that it has a large amount of contiguous memory
available exclusively to itself

An address space○

•

Isolate processes from each other and the kernel•
Potential to support virtual memory larger than physical memory•
The total size can be larger than physical memory

Greater support for multiprocessing○

•

Goals
Efficiently translate between virtual and physical addresses•
Protect the process's address space from other processes•

Address translation
Performed in hardware, on the Memory Management Unit (MMU)•
Use information provided by the kernel•
The program counter (PC) is also a virtual address

Each instruction requires at least one translation○

Therefore the translation is done in hardware, faster than software○

•

Virtual memory
The OS provides a separate and private memory for each process•
The virtual memory holds the code, data, heap and stack for the running program in that
process

•

Programs only see virtual addresses•
Each process is isolated in its virtual memory

Cannot access another process's virtual memory○

•

5 methods of address translation
Dynamic Relocation1.
Segmentation2.
Paging3.
Two-Level Paging4.
Multi-Level Paging5.

1. Dynamic Relocation
The MMU has

A relocation register (offset) which holds the physical offset for the running process's
virtual memory

○

A limit register which holds the size of the running process's virtual memory○

•

The kernel maintains separate offset and limit values for each process•
These values in the MMU registers are changed when there is a context switch between
threads in different processes

•

Translation from a virtual address v to a physical address p
Check if v is less than the limit ○

If this is satisfied, then set p to be v + offset

•

Summary
Saturday, October 29, 2022

 Virtual Memory Page 28

If this is satisfied, then set p to be v + offset○

Otherwise raise an exception○

Pros
Efficient○

•

Cons
Fragmentation○

•

2. Segmentation
Map each segment of the address space separately•
The kernel maintains an offset and limit value for each segment•
A virtual address can be thought of as having two parts

Segment ID○

Offset within segment○

•

Translation is similar to the dynamic relocation
Need to split the virtual address into two parts○

The first bit specifies the segment○

The next three bits specifies the first hex digit of the offset○

•

The kernel maintains a separate set of relocation offsets and limits for each process•

3. Paging
Divide physical memory into fixed-size chunks called frames (physical pages)•
Page size (virtual memory) must equal frame size (physical memory)•
Each page maps to a different frame•
Any page can map to any frame•
Page Table

Each row is a page table entry (PTE)○

Indexed by a page number○

A valid bit is used to indicate to indicate if the PTE is used or not○

•

Number of PTES = maximum virtual memory size / page size•
MMU includes a page table register

Stores a pointer to the page table for the current process
•

 Virtual Memory Page 29

Stores a pointer to the page table for the current process○

3. Page Table Size
A page table has one PTE for each page in the virtual memory•
Page Table Size = number of pages size of a PTE•
The size of a PTE is typically provided•

3. Page Tables: where?
Page tables are kernel data structures•
They live in the kernel's memory•

Shrinking the Page Table: Multi-Level Paging
Instead of having a single page table to map an entire virtual memory, we can organize it
and split the page table into multiple levels

•

A large, contiguous table is replaced with multiple smaller tables
Each fitting on to a single page○

•

If a table contains no valid PTEs, do not create that table•
The lowest-level page table contains the frame numbers•
All higher level tables contain pointers to tables on the next level•
The address translation is the same as single-level paging

Physical address = frame number page size offset○

•

Lookup is different•

5. Multi-Level Paging: Address Translation
The MMU's page table base register points to the page table directory for the current
process

•

Each virtual address has parts ()•
To translate a virtual address

Index into the page table directory using to get a pointer to a 2nd level page table1.
If the directory entry is not valid, raise an exception2.
Index into the 2nd level page table using to get a pointer to the 3rd level page
table

3.

If the entry is not valid, raise an exception4.
...5.
Index into the -th level page table using to find a PTE for the page being accessed6.
If the PTE is not valid, raise an exception7.
Otherwise, combine the frame number from the PTE with to determine the physical
address

8.

•

Summary: Roles of the Kernel and the MMU
Kernel (software)

Manages MMU registers on address space switches (context switch from one thread
in one process)to thread in a different process)

○

Creates and manages page tables○

Manages (allocates/deallocates) physical memory○

Handles exceptions raised by the MMU○

•

MMU (hardware)
Translates virtual addresses to physical addresses○

Checks for and raises exceptions when necessary○

•

 Virtual Memory Page 30

○

TLBs
Each assembly language instruction requires at least one memory operation (to fetch the
instruction)

•

Address translation through a page table adds a minimum of one extra memory operation
for each memory operation

•

Translation Lookaside Buffer (TLB)•
Small, fast, dedicated cache of address translations in the MMU•
Each TLB entry stores a single page to frame mapping•

Paging - Conclusion
Benefits

Paging does not introduce external fragmentation○

Multi-level paging reduces the amount of memory required to store page-to-frame
mappings

○

•

Costs
TLB misses are increasingly expensive with deeper page tables

To translate an address causing a TLB miss for a three-level page table requires
three memory accesses

▪

○

•

Locality
There are two types of locality•
Temporal locality

Programs are more likely to access pages that they have accessed recently than pages
that they have not accessed recently

○

•

Spacial locality
Programs are likely to access parts of memory that are close to parts of memory the
have accessed recently

○

•

Clock Replacement Algorithm
Can be visualized as a victim pointer that cycles through the page frames•
Moves whenever a replacement is necessary•

 Virtual Memory Page 31

Simplest scheduling model
Response time: time between the job's arrival and when the job starts to run•
Turnaround time: time between the job's arrival and when the job finishes running•
Must decide when each job should run, to achieve some goal•

Round Robin
Preemptive first-come-first-serve•

CPU Scheduling
Typically differs from the simple scheduling model

Runtime of threads are unknown○

Threads can be in blocked state○

Threads may have different priorities○

•

The objective of the scheduler is to achieve a balance between
Responsiveness - threads get to run regularly○

Fairness - some threads are more prioritized and need more attention○

Efficiency○

•

Multi-level Feedback Queues
Interactive threads are more frequently blocked•

Lecture 16 - Scheduling
Tuesday, November 15, 2022 13:43

 Scheduling Page 32

Objective of the scheduler
Responsiveness

Interactive threads do not stay in ready/blocked state for too long○

•

Fairness
Threads with higher priority should have a larger share of the CPU time○

Threads with lower priority should not starve○

Multiple ready queues

Each queue will have a priority▪

Within each queue, we will use round-robin FCFS▪

Who gets put in what queue and why?▪

Higher priority for interactive threads▪

In order to interact with users, they use I/O devices and wait for user input,
packets, etc.

▪

If a thread is able to run without being blocked except when its scheduling
quantum expired, it is not an interactive thread

We move it to a queue with lower priority□

▪

To prevent starvation, move the threads in the lower priority queues to the
highest priority queue periodically

▪

The higher the priority, the smaller the scheduling quantum▪

One small timer - shorter than the smallest scheduling quantum▪

May preempt lower priority thread when a thread wakes up▪

○

•

Linux Completely Fair Scheduler (CFS)
Each thread has a weight•
Ensure that each thread gets a share of the CPU that's proportional to its weight•
Track the "virtual" runtime of each runnable thread•
Always run the thread with the lowest virtual runtime•
Virtual runtime

Suppose is the weight of the ith thread○

Actual runtime of the thread multiplied by

 ○

•

Scheduling on multi-core processors
Per core ready queue vs. shared ready queue?•

Load balancing
An issue in per-core design•
Not an issue in shared queue design•

Lecture 17 - CPU Scheduling
Thursday, November 17, 2022

 Scheduling Page 33

Job Scheduling Problem
For the ith job, there are two parameters that characterize it

An arrival time , when the ith job becomes available to run○

A run time , the total length of time (total amount of processing time) required to
complete the ith job

○

•

A job scheduler decides which job should be running on the server at each point in time•
Two times for each job

A start time - when the ith job starts running○

A finish time - when the ith job finishes running○

•

Performance metrics
Characterized using two times

Response time:

How long it takes from the arrival of the job until it starts running▪

○

Turnaround time:

How long it takes from the arrival of the job until it finishes running▪

○

•

Four basic scheduler
First Come First Serve (FCFS)

Runs jobs in arrival time order○

Simple○

Avoids starvation○

Pre-emptive variant: Round-Robin (RR)○

•

Shortest Job First (SJF)
Runs jobs in increasing order of ○

Minimizes average turnaround time○

Long jobs may starve○

Pre-emptive variant: Shortest Remaining Time First (SRTF)○

•

Round Robin (Preemptive FCFS)

Summary
Friday, December 2, 2022

 Scheduling Page 34

CPU Scheduling
The jobs to be scheduled are the threads•
The runtime of threads are normally unknown•
Threads are sometimes not runnable

In a blocked state○

•

Threads may have different priorities•
The objective is normally to achieve a balance between

Responsiveness: ensure that threads get to run regularly○

Fairness: sharing of the CPU○

Efficiency: account for the fact that there is a cost in context switch○

•

Often expected to consider process and thread priorities•
Two approaches to scheduling with priorities

Schedule the highest priority thread1.
Weighted fair sharing

Give each thread a share of the CPU in proportion to its priority

 ▪

2.

•

Multi-level Feedback Queues (MLFQ)
The most commonly used scheduling algorithm•
Objective

Good responsiveness for interactive threads (interact with users via keyboard, mouse
and display)

○

Non-interactive threads make as much progress as possible○

•

Key observation
Interactive threads are frequently blocked, waiting for user input, packets, etc.

•

 Scheduling Page 35

Interactive threads are frequently blocked, waiting for user input, packets, etc.○

Approach: give higher priority to threads that block frequently•

MLFQ
Higher level higher priority•
Higher level smaller scheduling quantum•
The scheduler selects threads from the highest priority queue to run

i.e. threads in are only selected if is empty○

•

Preempted threads are put at the back of the next lower-priority queue
i.e. a thread from is preempted, it is pushed onto ○

•

When a thread wakes after blocking, put it into the highest-priority queue
Interactive threads tend to block frequently, so they tend to stay in the higher-
priority queues

○

Non-interactive threads will tend to sift down towards the bottom○

•

Each level has its own run queue and ready queue, but they all share the blocked queue•
To prevent starvation, all threads a periodically placed in the highest-priority queue•
Many variants

Preempt low-priority threads when a thread wakes to ensure a fast response to an
event

○

•

 Scheduling Page 36

Completely Fair Scheduler (CFS)
Key idea: each thread is assigned a weight•
Goal: ensure that each thread gets a share of the processor proportional to its weight•
The virtual run time of a runnable thread is the actual run time adjusted by the thread
weights

•

Always run the thread with the lowest virtual run time•
The virtual runtime advances

Slowly for threads with high weights○

Quickly for threads with low weights○

•

When a thread becomes runnable
Its virtual run time is initialized to some value between the min and max virtual run
times of the threads that are already runnable

○

•

MLFQ vs CFS
In MLFQ, the quantum depends on the thread priority•
In CFS, the quantum is the same for all threads and priorities•

 Scheduling Page 37

Contention and scalability
Access to shared ready queue is a critical section

Mutual exclusion required○

•

As the number of cores grows, contention for the ready queue becomes more of a problem•
Per core design scales to a larger number of cores•

CPU cache affinity
Typically each core will have some memory cache of its own•
Moving the thread to another core means data must be reloaded into that core's caches•
As thread runs, it acquires an affinity for one core•
Per core design benefits from affinity by keeping threads on the same core•

Load Balancing
In per-core design, queues often have different lengths•
This results in load imbalance

Some cores maybe idle while others are busy○

Threads on lightly loaded cores get more CPU time than those on heavily loaded core○

•

Not an issue in shared queue design•
Per-core design needs some mechanism for thread migration

Moving threads from heavily loaded cores to lightly loaded cores○

•

 Scheduling Page 38

Device registers
Different from CPU registers•
Three primary types

Status: tells you something about the device's current state○

Command: issue a command to the device by writing a particular value t o this
register

○

Data: transfer larger blocks of data to/from the device○

•

Some device registers can be combination of these types•

Sys/161 timer/clock
Starts at Jan 1, 1970 midnight•
In general, we need an epoch

A particular time chosen for calculating the current time○

•

Lecture 17 - Devices
Thursday, November 17, 2022

 Devices and IO Page 39

Accessing Devices
Port-mapped I/O

Own set of memory for I/O○

Memories are broken into ports○

Device registers are assigned port number○

Special I/O instructions (such as in and out)○

Very faster○

Less generalized; restrictive○

More expensive○

Number of ports is small○

•

Memory-mapped I/O
Each device register has a physical memory address○

kseg1 is for devices○

Use regular load and store instructions○

Memory used by an individual device is constant○

Since number of devices an OS uses is not constant, the memory used by kseg1 is not
constant

○

•

MIPS/OS161 Physical Address Space
Each device is assigned to one of 32 64KB device "slots"•
If a device uses more than 64 KB, then it's unsupported•

Persistent Storage Devices
Any device where data persists even when the device is without power•
Physical memory is not persistent•
A hard disk is persistent•
Also referred to as non-volatile•

Hard Disks
Commonly used persistent storage device•
A number of spinning, ferromagnetic-coated platters•
Read/write head applies a magnetic field•

Logical View of a Disk Drive
Three component in a read

Seek of read/write head○

Wait for the right sector to spin under the read/write head○

Read the 512 byte block○

•

Cost Model for Disk I/O
Seek time: move the read/write heads to the appropriate track

Depends on seek distance○

1.

Rotational latency: Wait until the desired sectors spin to the read/write heads
Value: 0 to cost of single rotation○

2.

Transfer time:
Depends on the rotational speed of the disk and the amount of data transferred

3.

Lecture 19 - I/O Scheduling
Thursday, November 24, 2022

 Devices and IO Page 40

Depends on the rotational speed of the disk and the amount of data transferred○

Performance Implications of Disk Characteristics
Large transfers to/from a disk device are more efficient than smaller ones•
Sequential I/O is faster than non-sequential I/O

Eliminate the need for (most) seeks○

•

While sequential I/O is not always possible, we can group requests to try and reduce
average request time

•

Adding/deleting files introduce disk fragmentation
Needs to defragment the disk periodically○

•

Disk Head Scheduling
Goal: reduce seek times by controlling the order in which requests are serviced•
Can be performed by the OS or the hard disk, or both•
FCFS is fair and simple, but offers no optimization for seek times

Starvation is possible○

•

 Devices and IO Page 41

Disk controller
Number of sectors

Read-only field○

•

Status
Read a status○

Issue a command by setting a status (?)○

•

Sector number
Sector of disk we want to read into the transfer buffer (data)○

•

Transfer buffer
Read/write by block/sector○

•

Solid State Drives (SSD)
A higher voltage is 0•
A lower voltage is 1•
Flash memories are initialized with lo voltage•

Writing and deleting from flash memory
Read whole block into memory•
Re-initialize block (all page bits back to 1s)•
Mark this block as free/overwritten•
Write to an empty block•
When there is no usable empty block, flash the ones that have been marked as
deleted/overwritten

•

Persistent RAM
Values are persistent in the absence of power•
Improve the performance of secondary storage

Traditional CPU caches are small - not effective for caching many disk blocks○

RAM can cache i-nodes and data blocks; but should be used for address spaces○

Use persistant RAM instead○

•

File
Persistent, name data objects•
Data consists of a sequence of numbered bytes•
May change size over time•
Associated meta-data

Type○

Timestamp○

Access controls○

•

File system
The data structures and algorithms used to store, retrieve and access files•
Logical file system

High-level API○

What a user sees○

•

Virtual file system•

Lecture 20 - Disks, File Systems
Tuesday, November 29, 2022

 Devices and IO Page 42

Virtual file system
Abstraction of lower level file systems○

Multiple different underlying files systems to the user as one○

•

Physical file system
How files are actually stored on physical media○

•

File interface
open

Returns a file identifier (or handle or descriptor)

Information about how you opened it (read, write, ...)▪

Where are we in the file (file index)▪

○

Used in subsequent operations to identify the file○

Other operations (e.g., read, write) require file descriptor as a parameter)○

•

close
Kernel tracks while file descriptors are currently valid for each process○

Close invalidates a valid file descriptor○

•

read
Copies data from a file into a virtual address space○

•

write
Copies data from a virtual address space into a file○

•

seek
Enables non-sequential reading/writing○

•

get/set file meta-data
fstat○

chmod○

ls○

-la○

•

File position and seeks
Each file descriptor (open file) has an associated file position

Starts at byte 0 when the file is opened○

•

Read and write
Start from the current file position○

Update the current file position as bytes are read/written○

•

seek are used for achieve non-sequential file I/O
lseek changes the file descriptor○

•

Directories and file names
A directory maps file names (strings representing the full path) to i-numbers•
An i-number is a unique identifier for a file or directory•
Given an i-number, the file system can find the data and meta-data for the file•
Since directories can be nested, a file system's directories can be viewed as a tree

Has a single root directory○

Files are leaves○

•

Files may be identified by pathname through the directory tree from the root directory to
the file

•

 Devices and IO Page 43

Devices
How a computer receives input from the outside world and produces output for the
outside world

•

Examples
Keyboard○

Printer○

Touch screen○

Timer/clock○

Disk drive○

Serial console○

Text screen○

Network interface○

•

Terminology
Bus: a communication pathway between various devices in a computer•
Internal bus

Aka memory bus○

Is for communication between the CPU and RAM○

Fast and close to the CPU(s)○

•

Peripheral bus
Aka expansion bus○

Allows devices in the computer to communicate○

•

Bridge
Connects two different buses○

•

Device register
Communications with devices carried out through device registers•
Three primary types•
Status

The device's current state○

Typically, a status register is read○

•

Command
Issue a command to the device by writing a particular value to this register○

•

Data
Used to transfer larger blocks of data to/from the device○

•

Some device registers are combinations of primary types
A status and command register

Read to discover the device's state▪

Written to issue a command▪

○

A data buffer

Sometimes combined ▪

Sometimes separated into data in and data out buffers▪

○

•

Summary
Saturday, December 3, 2022 16:36

 Devices and IO Page 44

Sys161 timer/clock
Used in preemptive scheduling•

Serial console
Used to write outgoing characters and read incoming characters•
If a write is in progress, the device exhibits undefined behaviour if another write is
attempted

•

IRQ stands for interrupt request•

Device drivers
A device driver is a part of the kernel that interacts with a device•
Communication happens by reading from or writing to the command, status and data
registers

•

Two methods•
Polling

The kernel driver repeatedly checks the device status○

•

Interrupts
The kernel does not wait for the device to complete the command○

Request completion is taken care of by the interrupt handler○

The device updates a status register and then generates an interrupt○

•

Binary semaphores are usually used instead of lock
The thread that initiates communication with the device may have to block○

The thread that acknowledges the interrupt is not necessarily the thread that initiates
the communication with the device

○

Lock makes it slower since we have to switch to the thread that initiates
communication

○

Binary semaphore can be released by any thread○

•

Accessing devices
Port-mapped I/O

Uses special assembly language I/O instructions○

Device registers are assigned pot numbers - regions of memory in a separate, smaller

•

 Devices and IO Page 45

Device registers are assigned pot numbers - regions of memory in a separate, smaller
address space

○

Special I/O instructions used to transfer data between a specified port and a CPU
register

○

Memory-mapped I/O
Each device register has a physical memory address○

Device drivers can read or write to them using normal load and store instructions○

•

A system may use both port-mapped and memory-mapped I/O•

Large data transfer to/from devices
Large data blocks can be transferred using other strategies•
Program-controlled I/O (PIO)

The device driver moves the data between memory and a buffer on the device○

Simple to implement○

The CPU is used to transfer the data○

•

Direct memory access (DMA)
The CPU is used to initiate communication with the device○

The device itself is responsible for moving data to/from memory○

The CPU is not used to transfer the data, and is free to do something else○

Used for block data transfers between devices (e.g. a disk controller and primary
memory)

○

•

Persistant storage devices
Persistant (aka non-volatile) storage is a device where data persists even when there is no
power

•

Primary memory (RAM) is not persistant•
Secondary storage (disk) is persistant•

Logical view of a disk drive
Logically a disk is an array of numbered blocks (sectors)•
Each block is the same size•
Blocks are the unit of transfer between the disk and memory•

Physical view of a hard drive

 Devices and IO Page 46

Physical view of a hard drive
A small number of platters (disks) made of glass or porcelain•
Each platter has two surfaces•
A surface is broken up into a series of concentric circles called tracks•
Cylinders are tracks of the same radius•
Each track is broken up into a series of arcs called sectors or blocks•
Each surface has a disk head (also called read/write head) to read and write data from this
surface

•

All disk heads are put in position by a single disk arm (also called an actuator arm)•

Cost model for disk I/O
Seek time - the time it takes to move the read/write head to the appropriate track

Depends on seek distance○

Value: 0 to cost of max seek distance○

•

Rotational latency - the time it takes for the desired sectors to spin to the read/write head
Depends on the rotational speed○

Value: 0 to cost of single rotation○

•

Transfer time - the time it takes until the desired sectors spin past the read/write heads
Depends on the rotational speed of the disk and the amount of data accessed○

•

Request service time = seek time + rotational latency + transfer time•

Performance implications of disk characteristics
Larger transfers are more efficient than smaller ones

The cost per byte is smaller for larger transfers○

The time it takes to get there is amortized over many blocks of data○

•

Sequential I/O is faster than non-sequential I/O
Sequential I/O operations eliminate the need for (most) seeks○

•

Disk head scheduling examples
The disk request queue (in order of arrival) is:•
104 183 37 122 14 130 65 70

Disk head scheduling 1: First Come First Served (FCFS)
Service the requests in the order they arrive•
Fair and simple•
Offers no optimization for seek time•

 Devices and IO Page 47

Disk head scheduling 2: shortest seek time first (SSTF)
Service the closest request first•
Seek times are reduced•
May cause starvation

For example, the request represented by the red dot○

•

Disk head scheduling 3: elevator algorithm (SCAN)
The disk head moves in one direction until there are no more requests in front of it, then
reverses

•

Reduce seek times (relative to FCFS)•
Avoids starvation•

 Devices and IO Page 48

 Devices and IO Page 49

Links
A hard link is an association between a name and an i-number

Each entry in a directory is a hard link○

•

Once a file is created, additional hard links can be made to it•
Linking to an existing file creates a new pathname for that file

Each file has a unique i-number, but may have multiple pathnames○

•

Not possible to link to a directory (to avoid cycles)•
Different from a shortcut, which link to the string to i-number mapping•
When a file is deleted, the number of hard links becomes 0

But it is still possible to restore the file○

If the i-number has not been reused○

•

Unlinking
Hard links can be removed

unlink○

Removes the link from the directory○

•

When the last hard link to a file is removed, the file is also removed•

Multiple file systems
DOS/Windows: use two-part file names

File system name○

Pathname within file system○

Example: C:\user\cs350\schedule.txt○

•

Unix: create single hierarchical namespace that combines the namespaces of two file
systems

Unix mount system call does this○

•

File system implementation
What needs to be stored persistently?

File data○

File meta-data○

Directories and links○

File system meta-data○

•

Non-persistent information
Per process open file descriptor table

File handle▪

File position▪

○

System wide

Open file table▪

Cached copies of persistent data▪

○

•

Lecture 21 - File Systems
Thursday, December 1, 2022

 File Systems Page 50

i-nodes
Direct data block pointers

Point at a single data block○

•

Single indirect pointer
E.g. single indirect pointer points at a data block, where we store direct pointers○

 pointers per block○

 bytes ○

•

Double indirect data block
 bytes○

•

Triple indirect data block
 byte○

•

Chaining
Directory table contains the name of the file, and each file's starting block•
Each block includes a pointer to the next block•
Random access is very bad•
Sequential access is better•

External chaining
Introduces a special file access table that specifies all of the file chains•
Read less blocks

Since the table just contains the links, it might fit on a single or two blocks○

•

File system design
What if we never delete or move a directory?

We can store the directories in the root's data○

•

Lecture 22 - File Systems
Tuesday, December 6, 2022

 File Systems Page 51

File
Files are persistent and named data objects•
Data consists of a sequence of numbered bytes•
No other assumptions are made about the data: it could be text, images, video, machine
code, etc.

•

Files may change size and content over time•
Files have associated meta data

Owner○

File type○

Date created○

Date modified ○

Access controls○

•

File Systems
File systems are data structures and algorithms used to store, retrieve and access files•
Can be separated into three different layers•
Logical file system

High-level API○

What a program sees (fopen, fscanf, fprintf, fclose)○

Manages file system information○

Abstract the details of how files are stored physically○

•

Virtual file system
Abstraction of lower level file systems○

Presents multiple different underlying file systems to the user as one○

•

Physical file system•

File Interface
open

Find a file○

Check permission (read, write, etc)○

Returns a file descriptor (identifier or handle)○

Other file operations (read, write, seek, close) for this process require this file
descriptor as a parameter in order to identify the file

○

We do not need to use the pathname (string) in the future○

The file descriptor is placed in the file descriptor table of the current process○

•

close
Invalidates a valid file descriptor○

Tracks which file descriptors are currently valid for each process○

•

read, write, seek
read copies data from a file into a virtual address space○

write copies data from a virtual address space into a file○

read and write are sequential

They use the current file position ▪

○

seek enables non-sequential reading/writing

Changes the file descriptor in the table▪

○

•

Summary
Sunday, December 4, 2022

 File Systems Page 52

Changes the file descriptor in the table▪

Allows a different starting position▪

File position and seeks
Each open file (valid descriptor) has an associated file position

This position starts at byte 0 when the file is opened○

•

Read and write operations
Start from the current file position○

Update the current file position as bytes are read/written○

•

Makes sequential file I/O easy•
seek (lseek) is used for non-sequential file I/O

Changes the file position associated with a descriptor○

The next read or write from that descriptor will use the new position○

•

Directories and i-numbers
A directory maps file names (strings) to i-numbers

An i-number (index number) is a unique (within a file system) identifier for a file or
directory

○

Given an i-number, the file system can find the data and meta-data for the i-number's
corresponding file.

○

•

Directories provide a way for applications to group related files•
Since directories can be nested, a file system's directories can be viewed as a tree

Has a single root directory○

Files are always leaves○

Directories can be interior nodes (if they are non-empty) or leaves (if they are empty)○

•

File names and pathnames
Files may be identified by pathnames, which describe a path through the directory tree
from t he root directory to the file

•

Directories also have pathnames•
Applications and humans refer to files using pathnames, not i-numbers•
Only the kernel is permitted to directly edit directories. Why?

In general, the kernel should not trust the user with direct access to the data
structures that the kernel relies on

○

•

 File Systems Page 53

Links
A hard link is an association between a name (string) and an i-number•
Each entry in a directory is a hard link•
When a file is created, a hard link to that file is also created•
E.g. open("/docs/a.txt", "O_CREAT|O_TRUNC")

This command opens the file and creates a hard link to that file in the directory○

O_CREAT means if this file does not exist then create it○

O_TRUNC means overwrite the existing contents (if the file is writable)○

•

Once a file is created, additional hard linkes can be made to it•
Example:

In C: link("/docs/a.txt", "/foo/myA")○

In Linux: link /docs/a.txt /foo/myA○

Creates a new hard link myA in directory /foo○

The link refers to the i-number of file /docs/a.txt (147) which must exist○

•

Linking to an existing file creates a new pathname for that file•
Each file has

A unique i-number○

May have multiple pathnames○

•

In order to avoid cycles, it is not possible to link to a directory•

Unlinking
Hard links can be removed:•
Example:

In C: unlink("docs/b.doc")○

In Linux: unlink /docs/b.doc○

This removes the link b.doc from the directory /docs○

•

Hard links have referential integrity
If the link exists, then the file it refers to also exists

•

 File Systems Page 54

If the link exists, then the file it refers to also exists○

When a hard link is created, it refers to an existing file○

The kernel keeps the number of hard links to an existing file○

A file is deleted when its last hard link is removed (count becomes zero)○

Symbolic links
A symbolic link, or soft link, is an association between a name(string) and a path name•
Command: symlink(/z/a, /y/k/m) - creates a symbolic link m in directory /y/k•
If an application attempts to open /y/k/m, the file system will

Recognize it as a symbolic link○

Attempt to open /z/a instead○

•

Referential integrity is not preserved for symbolic links•

Multiple File Systems
Some kind of global file namespace is required

Uniform across all the file system○

Independent of physical location○

•

Windows
Two-part file names○

File system name and path name within file system○

•

Linux
Create a single hierarchical namespace that combines the namespaces of multiple file
systems, e.g. the mount syscall

○

•

Mounting
Does not make two file systems into one file system•
Merely creates a single, hierarchical namespace that combines the namespaces of two file
systems

•

Temporary - exists only until the file system is unmounted•

 File Systems Page 55

File system implementation
What needs to be stored persistently?

File data○

File meta-data○

Directories and links○

File system meta-data○

•

What can be non-persistent?
File descriptor○

File position for each open file○

Open file table (info about files that are currently open)○

Cached copies of persistent data○

•

i-nodes
An i-node is a fixed size index structure that holds the file meta-data and pointers to the
data blocks

•

i-node fields may include
File type○

File permissions○

File length○

Time of last file access, last file update, last i-node update○

Number of hard links to this file○

Pointers to data blocks○

•

For small files, pointers in the i-node are sufficient to point to all data blocks (direct data
block pointers)

•

For larger files, we need another approach (single, double and triple indirect data block •

 File Systems Page 56

For larger files, we need another approach (single, double and triple indirect data block
pointers)

•

Directories
Implemented as a special type of file that contains directory entries•
Pairing up an i-number and a file name (the last component of a path name)•
Directory files can be read by application programs•
Directory files are only updated by the kernel

Create file○

Create link○

...○

•

In-memory (non-persistent) structures
In order to speed up file access, the kernel keeps some information in RAM which is
updated as processes access files

•

Per process - descriptor table
Tracks

The file descriptors this process has opened○

The file each open descriptor refers to○

The current file position for each descriptor○

•

System wide
Open file table

Files that are currently open by any process○

•

i-node cache
In-memory copies of recently-used i-nodes○

•

Block cache
In-memory copies of data blocks and indirect blocks○

•

Chaining
VSFS uses a per-file index (direct and indirect pointers) to access blocks•
Two alternative approaches•
Chaining

Each block includes a pointer to the next block
•

 File Systems Page 57

Each block includes a pointer to the next block○

External chaining
The chain is kept as an external structure○

•

Chaining
Implementation

The directory table contains the name of the file paired with its starting block (and
possibly its end block to facilitate appending)

○

•

Performance
Acceptable for sequential access○

Very slow for random access○

•

External chaining
Idea

A file access table (FAT)○

Specifies all of the file chains in one big table○

•

Key benefit
Reduces the number of blocks read by keeping this table in its own block○

Rather than having one pointer per block○

•

This table can be cached to improve performance•

File System Design
Most files are small•
File systems contain many files•
Typically directories are small•
Even as disks grow in capacity, the average file system usage is 50%•

Fault Tolerance

 File Systems Page 58

Fault Tolerance
Special-purpose consistency checkers

Runs after a crash but before normal operations resume○

Finds and attempts to repair inconsistent file system data structures

Files with no directory entry▪

Free space that is not marked as free▪

○

•

Journaling
Write-ahead logging○

Record the file system meta-data changes in a journal○

The sequences of changes can be written to disk in a single operations○

After the changes have been journal, update thew disk data structures.○

•

 File Systems Page 59

1b
If we do not use volatile our value is locally cached, instead of loading the actual global
value

•

Any time you use this variable, read it from memory.•
Any time you write to this variable, write it back to memory•

1c
A thread does not have its own address space•
A process is an environment for programs to execute. A thread is a sequence of
instructions

•

1d
Spinlock makes you busy-wait (still executing)•

2a
Virtual memory•
Ensure process that cannot access each other's memory•

2b
Not all tasks are can be run in parallel•
Context switch causes low efficiency•
Hardware support•

2c
If we have multiple threads, then we can gain efficiency if one of them blocks •

2d
If we omit page entries, we can have memory errors•
Because we are using indices to represent the page tables, we need to have an index for
every page

•

3a
Map individual pages to different physical fragmentation•
Internal fragmentation - much smaller•
By making all allocations unit sizes•

4b
X -> A -> B•
Node create locks A and B•
Node destroy locks X•
Node create tries to lock X, blocks•
Node destroy tries to lock A•
Deadlock•
Solution: force strict resource ordering•
All threads first lock parent, then lock current, and then lock child•

Midterm Solutions
Friday, December 2, 2022

 Midterm Review Page 60

Which of the following are shared between different threads? Which are not?
Global variablesa.
Heapb.
Stackc.

1.

a and b are shared; c is not
Does thread_yield guarantee that the CPU will be given to another thread?2.
No, the same thread can be scheduled
1 processor, 10 cores, each core can run 2 threads. How many threads can be run
simultaneously?

3.

20
List 4 ways that can cause a context switch.4.
Thread yield, blocks, exit, preempted
Draw the thread state diagram.5.
Running to ready: preempted, yield
Running to blocked: waiting for a resource
Blocked to ready: wake up from the wait channel
Ready to running: dispatch
What is a difference between a switchframe and a trap frame?6.
Switchframe only stores the s0-s7 registers. A trapframe stores all registers.

Threads
Sunday, December 11, 2022

 Final Review Page 61

Identify race condition in Slide 9.1.
Identify race condition in Slide 10.2.
What is the difference between exclusive LDREX/STREX and normal lw/sw?3.
LDREX and STREX must be used together.
STREX checks whether the value at an address has been touched since the last LDREX.
What is the difference between spinlock and lock in terms of their owners?4.
Spinlock is owned by the CPU.
Lock is owned by a thread.
Describe a semaphore's P and V operations.5.
P: if the counter is less than or equal to 0, wait for it to become greater than 0, and
decrement the counter. If it is already greater than 0, decrement the counter.
V: increment the counter
What are the 3 types of semaphores?6.
Counting, binary and barrier
List 3 differences between a lock and a semaphore.7.
A lock has an owner. A semaphore does not.
A lock only has a boolean value "hold". A semaphore has a counter with integer value.
V does not have to follow P.
Identify race condition in Slide 33.8.
Why does the wait channel need to be locked before releasing the spinlock?9.
Describe the wait, signal and broadcast operations of a condition variable.10.
cv_wait releases the lock associated with the cv, blocks, wakes up when the condition is
satisfied (by cv_signal or cv_broadcast).
cv_signal wakes up one thread in the wait channel.
cv_broadcast wakes up all threads in the wait channel.
Write the pseudocode to implement cv_wait.11.
Check owner
Lock wait channel
Release lock
Sleep on wait channel
Acquire the lock
T/F: When a blocked thread is unblocked by cv_signal or cv_broadcast, it needs to
reacquire the lock explicitly.

12.

False
Why do we need to call cv_wait inside of a while loop?13.
We need to check the condition again since another thread could have changed the
variable before we check it.
What does the volatile keyword mean? Why is it needed for shared variables?14.
Load and store into the memory instead of in registers; to prevent race conditions
How does no-hold-and-wait prevent deadlocks?15.
No-hold-and-wait acquires all resources at the same time, or acquire none if any one
cannot be acquired, so that a thread cannot block while it has resources.
How does resource ordering prevent deadlocks?16.
Resource ordering assigns resources with numbers, and any threads can only acquire
resources in order.

Synchronization
Sunday, December 11, 2022

 Final Review Page 62

What is the difference between a process and a program?1.
A process is an execution environment for programs.
A program is an executable file.
Do processes share the same address space?2.
No, they have separate address space and are isolated from each other.
If one process has an error, how will the other processes affected?3.
They should not be affected.
What does fork do?4.
Create a clone of the current process, such that the address spaces are identical at the
time of clone.
True or false: two processes after fork have the identical address space for the rest of their
lives.

5.

No, they have the same address space (not sharing)
What is the fork's return value to the parent? To the child?6.
fork returns child's pid to the parent and returns 0 to the child
Why does the kernel records the exit status code when a process exits?7.
Because its parent can call waitpid on it.
What changes in execv? What stays the same in execv?8.
The program that a process executes is changed in execv, but pid and parent-child
relationship stays the same.
Write the pseudocode for "/testbin/argtest first second" using execv9.
char *[4] buffer
buffer[1] = "/testbin/argtest"
buffer[2] = "first"
buffer[3] = "second"
buffer[4] = "\0"
What is the difference between interrupts and exceptions?10.
Interrupts are generated by devices.
Exceptions are raised during program executation.
There is only one syscall exception. How does the kernel know which system call the
application is requesting?

11.

The kernel puts a system call code in the register v0.
System calls take parameters and return values, like function calls. How does this work,
since system calls are really just exceptions?

12.

Kernel-specified locations before the syscall, and looks for return values in kernle-specified
locations after the exception handler returns.
On MIPS, parameters go in registers a0, a1, a2, a3.
Briefly describe exception handling in OS/161.13.
Creates a trapframe.
Determines the type of exception.
Finds out it is a system call exception.
Determines the type of syscall.
Does the work to handle exception.
Restore state from the trapframe.
Return from execution.
Where are trap frames and switch frames placed? Why?14.

Process
Saturday, December 10, 2022

 Final Review Page 63

Where are trap frames and switch frames placed? Why?14.
They are placed in the kernel stack to prevent users from accessing it
Why do we have system calls?15.
Draw the stack diagram for a fork system call followed by a timer interrupt when the syscall
is executed by the kernel.

16.

 Final Review Page 64

Why do we have virtual addresses?1.
To isolate the process from each other-

To create an illusion of having a memory that is larger than the physical memory-

What is the amount of addressable virtual memory in bytes if the virtual address is 32 bits?2.

Since virtual memory is not real, how do processes access a virtual address?3.
They need to translate the virtual addresses into physical addresses using via the TLB/page
table
Why is address translation done in hardware, which is faster than software?4.
Because each instruction execution involves a translation from a virtual address to a
physical address.
In dynamic relocation, what two MMU registers are needed? What do these values
represent? Are they the same for every process?

5.

We need a relocation and a limit register. The relocation register stores the offset
(beginning of the virtual address for a process). The limit register stores the size of
memory. They should not be the same for every process, otherwise the processes are not
isolated from each other (i.e., they can access each other's data).
What is a disadvantage of dynamic relocation?6.
External fragmentation - since the address spaces of different processes can have different
size, so even if there is enough memory, it might not be contiguous.
Internal fragmentation - the code, data and stack sections can have a lot of spaces
between, causing wasted space.
What happens when we try to write to an invalid virtual address?7.
The MMU raises an exception.

8.

Process A:
0x0002 502C
Exception
0x0002 4000

Process B:
0x0001 402C
0x0001 B000
0x0001 3000

For segmentation, what two values do we need for each segment? What do these values
represent?

9.

We need a relocation and limit register for each segment. Relocation is the offset

Virtual Memory
Friday, December 9, 2022

 Final Review Page 65

We need a relocation and limit register for each segment. Relocation is the offset
(beginning address of a segment), limit is the size of a segement.
With 3 bits of segment number, how many segments can we have? How many bytes per
segment if the number of virtual address bits is 32?

10.

8;

How many bits of segment number do we need for
6 segments?a.
3
12 segments?b.
4
16 segments?c.
4

11.

12.

Process A

V Segment Offset P

0x1240 = 0001… 0 0x1240 0x39240

0xA0A0 = 1010… 1 0x20A0 0x120A0

0x66AC = 0110… 0 0x66AC Exception

0xE880 = 1110… 1 0x6880 Exception

 Final Review Page 66

13.

0x0007 2004
0x0005 31A4

Where do page tables live?14.
Page tables are kernel data structures. They live in the kernel's memory.
Which are done by the kernel (software)? Which are done by the MMU (hardware)?

Manages MMU registers during context switchesa.
Creates and manages page tablesb.
Manages physical memoryc.
Handles exceptions raised by the MMUd.
Translates virtual addresses to physical addressese.
Checks for and raises exceptionsf.

15.

Kernel: a, b, c, d
MMU: e, f
What is stored in a TLB entry?16.
Virtual address to physical address mappings
What does the kernel need to do if the MMU cannot distinguish TLB entries from different
address spaces?

17.

It needs to clear the TLB before context switches
What are the advantages and disadvantages of multi-level paging?18.
Which kernel function handles TLB exceptions?19.
vm_fault

 Final Review Page 67

20.

What are contained in an ELF file?21.
Address space segment descriptions.

The virtual address of the start of the segment○

Length of the segment○

Location of the segment in ELF○

Length of the segment in ELF○

Entry point○

Other information○

The ELF file does not describe the stack. Why?22.
We don't know the content of the stack before hand
What does the kernel use to manage frame use?23.
Coremap
How do we translate kseg0 addresses to physical ones? Is the TLB used?24.
Subtract 0x8000 0000. The TLB is not used.
How do we translate kseg1 addresses to physical ones? Is the TLB used?25.
Subtract 0xA000 0000. The TLB is not used.
What is the set of virtual pages present in physical memory called?26.
Resident set of a process
How do we track which pages are in physical memory?27.
We use a present bit in the page table. If present = 1 then the page is present in physical
memory
In a software-managed TLB, when does the kernel detect the problem of a process trying
to access a non-resident page? What is the event called?

28.

When the MMU raises a TLB miss exception and the kernel finds that the present bit is 0.

 Final Review Page 68

When the MMU raises a TLB miss exception and the kernel finds that the present bit is 0.
This event is called a page fault.
What is the optimal page replacement policy? Why is it not possible?29.
The optimal policy is to replace the one that will be used farthest in the future. It is not
possible because we cannot predict the future.

 Final Review Page 69

Describe and give an advantage and disadvantage of:
First Come First Serveda.
Fair and simple; no optimization
Round Robinb.
Shortest Job Firstc.
Reduce average turnaround time; starvation
Shortest Remaining Time Firstd.
Starvation still possible

1.

In a MLFQ, which priority queue has the longest quantum and which priority queue has the
shortest quantum? Why?

2.

The quantum is the shortest in the highest priority queue and the longest in the lowest priority
queue
Where are preempted threads put in a MLFQ?3.
Lower priority queue
Where are blocked threads put after they wake up in a MLFQ?4.
Highest priority queue
How does a MLFQ prevent starvation of non-interactive threads?5.
They are periodically put in the highest priority queue
In Linux Completely Fair Scheduler, how to calculate a thread's virtual runtime?6.
Actual runtime times sum of weight divided by a thread's weight
What is the difference between MLFQ and CFS in terms of the quantum?7.
MLFQ: the quantum is the shortest in the highest priority queue and the longest in the lowest
priority queue
CFS: the quantum is the same

8.

Per core ready queue vs. Shared ready queue
Which one offers better performance?a.
Per core (no need to use synchronization primitives)
Which one scales better?b.
Per core
Which one has better cache affinity?c.
Per core

9.

Scheduling
Friday, December 9, 2022

 Final Review Page 70

Per core
Which one has load balancing issues?d.
Per core (need occasional rebalance - thread migration)

 Final Review Page 71

What is an internal bus? What is a peripheral bus? Which one is faster?1.
Internal bus is for communication between RAM and CPU.
Peripheral bus is for devices to communicate between each other.
Internal bus is faster.
What are the three primary types of device registers? 2.
Status - showing what the device is doing
Command - how the OS issues command for a device
Data - large data transfer buffer
In the sys/161 timer/clock, why is the countdown time smaller than the scheduling
quantum?

3.

What does restart-on-expiry do?4.
When set to 1, restart the countdown timer automatically when it expires
In the serial console, what will happen if a write is in progress but another write is
attempted? How do we prevent this from happening?

5.

The behaviour is undefined. We need some kind of mutual exclusion.
What does a device driver do?6.
It is a part of a kernel that communicates with a device.
Give the pseudocode for writing character to serial output device, using polling7.
P(sem)
Write to character buffer
while (1) {

If (writeIRQ) {
break;

}
}
Write writeIRQ register to clear the bit
V(sem)
Why do we use binary semaphores instead of locks for device drivers?8.
Because the thread that initiates the communication with the device might not be the
same as the one that handles the interrupt and acknowledges the completion. Since
semaphores have no owners, it is better than locks in this case.
Give the pseudocode for writing character to device data register using the device driver
write handler and interrupt handler for serial device.

9.

Describe differences between port-mapped I/O and memory-mapped I/O.10.
Port mapped I/O: small, separate address space, each device is given a port number, fast,
restrictive
Memory mapped I/O: use the same address space, slow, each device needs to check every
signal
Describe the difference between program-controlled I/O and direct memory access.11.
Program-controlled I/O: the CPU does the job; it will be busy
Direct memory access: the CPU issues a command to the disk to do the job, and it can do
other things while waiting
A disk has a total capacity of bytes. The disk has a single platter with tracks. Each
track has sectors. The disk operates at 10000 RPM and has a maximum seek time of 20
milliseconds.

How many bytes are in a track?a.

12.

Devices and I/O
Friday, December 9, 2022

 Final Review Page 72

How many bytes are in a track?a.

How many bytes are in a sector? b.

What is the maximum rotational latency?c.

What is the average seek time and average rotational latency?d.
Average seek time: 10 ms
Average rotational latency: 3 ms
What is the cost to transfer 1 sector?e.

What is the expected cost to read 10 consecutive sectors from this disk?f.

Why is larger, sequential transfers to/from a di3sk device more efficient than smaller ones?13.
Sequential transfers are more efficient per byte, since the seek time dominates, and
sequential access means the seek time for the second to last transfer is 0 (or very small if
we still need to move tracks)
What is a disadvantage of Shortest Seek Time First (choosing the closest request)?14.
Starvation - there can be a never-ending stream of requests that are close to the current
position of read/write head, which means a request at a track that is far away might never
get processed.
What does writing to the status register and the sector number register of the sys/161 disk
controller do?

15.

Issue a command with the sector number as a parameter
Give the pseudocode for writing to sys/161 disk using a write handler and an interrupt
handler.

16.

Write handler:

P(disk_sem)
Write to the status register
Write to the data buffer
P(disk_completion_sem)
V(disk_sem)

Interrupt handler:

Write to the interrupt register to ack completion
V(disk_completion_sem)
Give the pseudocode for reading from sys/161 disk using a read handler and an interrupt
handler.

17.

Read handler:

P(disk_sem)
Write to the status register
Write to the data buffer
P(disk_completion_sem)
Get the data from the transfer buffer
V(disk_sem)

 Final Review Page 73

V(disk_sem)

Interrupt handler:

Write to the interrupt register to ack completion
V(disk_completion_sem)

 Final Review Page 74

What are logical file system, virtual file system and physical file system?1.
Logical file system - provides high level API to users
Virtual file system - abstract different file systems into one
Physical file system - how files are actually stored on disk
What does open do to a file?2.
Returns a file descriptor
Why do we need seek for read and write?3.
To enable non-sequential read and write
Write the pseudocode for reading the first 64000 bytes of a file, 64 bytes at a time.4.
Write the pseudocode for reading the first 64000 bytes of a file, 64 bytes at a time, in
reverse order.

5.

What will happen if the file position for lseek is invalid?6.
There will be no error but there can be errors in subsequent read/write
What is contained in a directory?7.
Mapping from pathnames to i-numbers
Can directories be leaves?8.
Empty directories are leaves
Why is only the kernel permitted to directly edit directories?9.
To prevent user programs from changing the file system data structure
What is a hard link?10.
An association between a name (string) and an i-number
Can hard links be made to a file once a file is created?11.
Yes
Can a file has multiple i-numbers? Multiple pathnames?12.
No; Yes (created through hard links)
Why is not possible to link to a directory? Give an example.13.
To avoid cycles
What is the difference between a hard link and a soft link?14.
Hard link has referential integrity. When the number of hard links go to 0, the file is
deleted.
Soft link does not have referential integrity. There can be dangling soft links
What will happen if /y/k/g is deleted and we try to open /z/m15.

File System
Friday, December 9, 2022

 Final Review Page 75

There would be an error since /z/m is now a dangling soft link.
Describe what mounting does.16.
Creates a single, hierarchical namespace that combines the namespaces of two file systems
What is one difference between RAM and disks related to read and write?17.
RAM is byte addressable. Disk is sector addressable
Give 3 reasons why we group consecutive sectors into a block.18.
1. better spatial locality
2. reduces the number of block pointers
3. 4 KB block is a convenient size for on demand paging
What is stored in an i-node? What is stored in a superblock?19.
i-nodes contains file meta-data
Superblock contains the metadata for the entire file system, e.g. Number of inodes,
location of bitmaps, location of inode array.
If the disk blocks have 32-bit addresses, and each have size 4 KB, what is the maximum disk
size?

20.

Suppose block size is 4 KB and pointer size is 4 bytes.

What is the maximum file size using 12 direct and 1 indirect pointers?a.

What is the maximum file size using 12 direct, 1 indirect and 1 double indirect
pointers?

b.

What is the maximum file size using 12 direct, 1 indirect, 1 double indirect and 1
triple indirect pointers?

c.

21.

How do we know the location of root i-node?22.
It's usually in a specific location.
List the steps for reading from the file /foo/bar and reading three data blocks.23.
Read root i-node
Read root data to get foo's i-number
Read foo i-node to get data block
Read foo data to get bar's i-number
Read bar i-node to check for permissions
Read bar i-node to get first data block

 Final Review Page 76

Read bar i-node to get first data block
Read first data block
Write access time to bar i-node
Read bar i-node to get second data block
Read second data block
Write access time to bar i-node
Read bar i-node to get third data block
Read third data block
Write access time to bar i-node
List the steps for creating the file bar in the directory /foo and writing three data blocks.24.
Read root i-node
Read root data to get foo's i-number
Read foo i-node to get foo data block
Read foo data block to check whether the file bar already exists
Read i-node bitmap to find a new i-node
Write i-node bitmap to indicate a new i-node is being used
Write foo data to store the mapping from /foo/bar to the i-number (create a hard link)
Write foo data to create a new entry in the foo directory
Read and write to initialize bar's i-nodes
Write foo's i-node with a new value for the last time modified
Read bar i-node
Read data bitmap
Write data bitmap
Write bar data
Write bar i-node
Read bar i-node
Read data bitmap
Write data bitmap
Write bar data
Write bar i-node
Read bar i-node
Read data bitmap
Write data bitmap
Write bar data
Write bar i-node
Describe one advantage and one disadvantage of chaining.25.
Advantage: simple to implement, space efficient; ok for sequential access
Disadvantage: very bad for random access
Describe one advantage and one disadvantage of external chaining.26.
Advantage: better random access than chaining since we don't need read a lot of blocks
(the table is smaller compared to the data)
Disadvantage: need extra space
What does crash consistent mean?27.
The file system data stays consistent after a system failure
What is write-ahead logging?28.
Log the changes made to the metadata of a file system. Try to perform the changes, and
apply the changes that have been logged afterwards.

 Final Review Page 77

