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1.1.5 Bijective Proofs
Surjective, Injective, Bijective
Let f: A — B be a function from a set A to a set B.

e The function f is surjective if for every b € B there exists an a € A such that
fla) =0b.
e The function f is injective if for every a,a’ € A, if f(a) = f(d’), then a = d’.

e The function f is bijective if it is both surjective and injective.

2.1 Binomial Theorem and Binomial Series

Theorem 2.2 (Binomial Theorem)

For any natural number n € N,

(1+z)" = :0 (Z) 2"

Theorem 2.4 (Binomial Series/Negative Binomial Theorem)

For any positive integer ¢ > 1,

2.2.1 Generating Series

Weight Function

Let A be a set. A function w : A — N is a weight function if for every n € N there are

only finitely many elements a € A of weight n.



Generating Series

Let A be a set with a weight function w : A — N. The generating series of A with

respect to w is

A(w) = ®@) = 3 @

acA

Proposition 2.7

Let A be a set with a weight function w : A — N, and let

[e.9]

D u(1) = ap+ ayx + agx® + - = Zanx”

n=0

For every n € N, the number of elements of A of weight n is a,, = |A4,|.

3.2 Unambiguous Expressions

Unambiguous Expression

Let R be a regular expression that produces a rational language R. Then R is unam-
biguous if every string in R is produced exactly once by R. If an expression is not
unambiguous, then it is ambiguous.

Theorem 3.13

Let R be a regular expression producing the rational language R and leading to the
rational function R(x). If R is an unambiguous expression for R, then R(x) = ®g(x), the

generating series for R with respect to length.

3.2.2 Block Decomposition

Proposition 3.17 (Block Decomposition)

The regular expressions 0*(11*00%)1* and 1*(00*11*)0* are unambiguous expressions for

the set of all binary strings. They produce each binary string block by block.

4.3 Partial Fractions

Theorem 4.12 (Partial Fractions)

[See textbook]



4.4.1 The General Binomial Series

Negative Binomial Theorem

For a positive integer t > 1,

Theorem 4.21 (The Binomial Series)

For any complex number a € C
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4.1 Definitions

Graph

A graph G is a finite nonempty set, V(G), of objects, called vertices, together with a
set E(G), of unordered pairs of distinct vertices. The elements of F(G) are called edges.
Adjacency

If e = {u, v} then we say that u and v are adjacent vertices, and that edge e is incident
with vertices u and v. We can also say that the edge e joins u and v. Vertices adjacent
to a vertex u are called neighbours of u. The set of neighbours of u is denoted by N (u).

Planar

A graph which can be represented with no edges crossing is said to be planar.

4.2 Isomorphism

Isomorphic

Two graphs GG; and G5 are isomorphic if there exists a bijection f : V(G1) — V(Gs)
such that vertices f(u) and f(v) are adjacent in Gs if and only if u and v are adjacent in
(G1. We might say that f preserves adjacency. The bijection f is called an isomorphism.

Isomorphism Class

The collection of graphs that are isomorphic to G forms the isomorphic class of G.

4.3 Degree

Degree

The number of edges incident with a vertex v is called the degree of v, and is denoted
by deg(v).



Theorem 4.3.1 (Handshaking Lemma)

For any graph G,

> deg(v) = 2|E(G)|
)

veV (G

Corollary 4.3.2

The number of vertices of odd degree in a graph is even.

Corollary 4.3.3

The average degree of a vertex in the graph G is

2|E(G)]
V(G)]

Regular Graph

A graph in which every vertex has degree k, for some fixed k, is called a k-regular graph

(or just a regular graph). The number of edges in a k-regular graph with n vertices is

nk

2
Complete Graph

A complete graph is one in which all pairs of distinct vertices are adjacent. The complete

graph with p vertices is denoted by K,, n > 1. The number of edges in K, is

n
2
4.4 Bipartite Graphs

Complete Graph

A complete graph is one where every pair of vertices is an edge. A complete graph on
n vertices is denoted K.

Bipartite Graph

A graph in which the vertices can be partitioned into two sets A and B, so that all edges
join a vertex in A to a vertex in B, is called a bipartite graph, with bipartition (A,
B).



Complete Bipartite Graph

The complete bipartite graph K, , has all vertices in A adjacent to all vertices in B,
with |A| = m, |B| = n. The number of edges in K,,, is mn

n-cube

For n > 0, the n-cube is the graph whose vertices are the binary strings of length n, and
two strings are adjacent iff they differ in exactly one position.

Problem 4.2.2

The number of edges in a n-cube is n2"~ !,

Problem 4.2.3

The n-cube is bipartite.

4.6 Paths and Cycles

Subgraph

A subgraph of a graph G is a graph whose vertex set is a subset U of V(G) and whose
edge set is a subset of those edges of GG that have both vertices in U.
If H is a subgraph of G and V(H) = V(G), then we say H is a spanning subgraph of

G.
If H is not equal to GG, we say it is a proper subgraph of G.

Walk

A walk in a graph G from vy to v, is an alternating sequence of vertices and edges of G
which begins with vy, ends with v, and for 1 <7 < n, edge ¢; = {v;_1,v;}. Such a walk

can be called a vy, v,-walk.

Path

A path is a walk in which all the vertices are distinct. Note that all the edges are also

distinct.

Theorem 4.6.2

If there is a walk from vertex x to vertex y in (G, then there is a path from z to y in G.



Corollary 4.6.3

Let x, y, z be vertices of GG. If there is a path from z to y in G and a path from y to z in
(G, then there is a path from x to z in G.

Cycle

A cycle is a connected graph that is regular of degree two. A cycle with n edges is called
an n-cycle or a cycle of length n.
The shortest possible cycle in a graph is a 3-cycle, often called a triangle.

Theorem 4.6.4

If every vertex in GG has degree at least 2, then G contains a cycle.

Girth

The girth of a graph G is the length of the shortest cycle in G, and is denoted by ¢(G).

Hamilton Cycle

A spanning cycle is known as a Hamilton cycle.

4.8 Connectedness

Connected

A graph G is connected if for each two vertices x and vy, there is a path from z to y.

Theorem 4.8.2.

Let G be a graph and let v be a vertex in G. If for each vertex w in G there is a path

from v to w in G, then G is connected.

Problem 4.8.3

The n-cube is connected for all n > 0.

Component
A component of G is subgraph C' of G such that
1. C is connected

2. No subgraph of G that properly contains C' is connected



Theorem 4.8.5

A graph G is not connected if and only if there exists a proper nonempty subset X of
V(G) such that the cut induced by X is empty.

4.9 Eulerian Circuits

Eulerian Circuit

An Eulerian circuit of a graph G is a closed walk that contains every edge of G exactly
once.

Theorem 4.9.2

Let G be a connected graph. Then G has an Eulerian circuit if and only if every vertex

has even degree.

4.10 Bridges

If e € E(G), we denote by G — e the graph whose vertex set is V(G) and whose edge set
is E(G)\{e}, so G — e is the graph obtained from G by deleting the edge e.

Edge

An edge e of G is a bridge if G — e has more components than e. If G is connected,
a bridge is an edge such that G — e is not connected. Some text uses cut-edge as a
synonym for bridge.

Lemma 4.10.2

If e = zy is a bridge of a connected graph G, then G — e has precisely two components.
Furthermore, x and y are in different components.

Theorem 4.10.3

An edge e is a bridge of a graph G if and only if it is not contained in any cycle of G.

Corollary 4.10.4

If there are two distinct paths from vertex u to vertex v in G, then G contains a cycle.
Equivalently, if a graph G has no cycles, then each pair of vertices is joined by at most

one path.



5.1 Trees

Tree

A tree is a connected graph with no cycles.

Forest

A forest is a graph with no cycles.

Lemma 5.1.3

If uw and v are vertices in a tree T', then there is a unique uv-path in 7.

Lemma 5.1.4

Every edge of a tree T is a bridge.

Theorem 5.1.5

If T is a tree, then |E(T)| = |V(T)| -1

Corollary 5.1.6

If G is a forest with k& components, then |E(G)| = |V(G)| — k.

Leaf

A leaf in a tree is a vertex of degree 1.

Theorem 5.1.8

A tree with at least two vertices has at least two leaves.

Counting Leaves in a Tree

Let T be a tree and let n;, denote the number of vertices of degree k in T". Then the

number of leaves in T, nq, is

ny = 2+Z(k—2)nk

k>3

The formula above implies that if T' contains a vertex of degree k, where k > 3, then



5.2 Spanning Trees

A spanning tree is a spanning subgraph which is also a tree. Of all the spanning

subgraphs, a spanning tree has the fewest edges while remaining connected.

Theorem 5.2.1

A graph G is connected if and only if it has a spanning tree.

Corollary 5.2.2

If G is connected, with p vertices and p — 1 edges, then G is a tree.

Theorem 5.2.3

If T is a spanning tree of GG and e is an edge not in T, then T + e contains exactly one

cycle C. Moreover, if €’ is any edge on C, then T + e — €’ is also a spanning tree of G.

Theorem 5.2.4

If T is a spanning tree of G and e is an edge in T', then T" — e has 2 components. If ¢’ is
in the cut induced by one of the components, then T'— e + € is also a spanning tree of G.
5.3 Characterizing Bipartite Graphs

Lemma 5.3.1

An odd cycle is not bipartite.

Theorem 5.3.2

A graph is bipartite if and only if it has no odd cycles.

5.6 Minimum Spanning Tree

In the minimum spanning tree (MST) problem, we are given a connected graph G and
a weight function on the edges w : F(G) — R. The goal is to find a spanning tree in G

whose total edge weight is minimized.

Theorem 5.6.1

Prim’s algorithm produces a minimum spanning tree for G.



7.1 Planarity

Planar

A graph G is planar if it has a drawing in the plane so that its edges intersect only
at their ends, and so that no two vertices coincide. The actual drawing is called a pla-
nar embedding of GG, or a planar map. A graph is planar if and only if each of its
components is planar.

Faces

A planar embedding partitions the plane into connected regions called faces. One of
these regions, called the outer face, is unbounded.

Boundary

The subgraph formed by the vertices and edges in a face is called the boundary of the
face.

Adjacent

Two faces are adjacent if they are incident with a common edge.

Boundary Walk

Assume that G is connected. As one moves around the entire perimeter of a face f, one

encounters the vertices and edges in a fixed order, say
Wy = (vo, €1,v1,€2,V2, ..., V1, €n, Up)

where v,, = vy. This sequence is a closed walk of the graph G, and we call it the boundary
walk of face f. (The boundary walk can start at any vertex, and can proceed around the

perimeter in either a clockwise or counterclockwise direction.)

Degree

The number of edges in the boundary walk W} is called the degree of the face f.

Note

A bridge of a planar embedding is incident with just one face, and is contained in the
boundary walk of that face twice, once for each side. On the other hand, if e is an edge
of a cycle of an embedding, e is incident with exactly two faces, and is contained in the
boundary walk of each face precisely once. Every edge in a tree is a bridge, so a planar
embedding of a tree T" has a single face of degree 2|E(T")| = 2|V(T)| — 2



Theorem 7.1.2 (Faceshaking Lemma)

If we have a planar embedding of a connected graph G with faces fi,..., f,, then

Zdeg(ﬁ) =2|E(G)|

Corollary 7.1.3

If the connected graph G has a planar embedding with f faces, then the average degree

of a face in the embedding is

2|E(G)|
f

7.2 Euler’s Formula

Every planar embedding of a given connected planar graph has the same number of faces,

a fact that we can deduce from the following result.

Theorem 7.2.1 (Euler’s Formula)

Let G be a connected graph with p vertices and ¢ edges. If G has a planar embedding
with f faces, then

p—q+f=2

7.4 Platonic Solids

The cube and the tetrahedron exhibit a great deal of symmetry. In particular, the faces
have the same degree and the vertices have the same degree. Such polyhedra are called
platonic solids. There are just five platonic solids: the tetrahedron, the cube, the
octahedron, the dodecahedron, and the icosahedron.

Platonic

A graph is platonic if it admits a planar embedding in which each vertex has the same
degree d > 3 and each face has the same degree d > 3

Theorem 7.4.1

There are exactly five platonic graphs.



7.5 Nonplanar Graphs

Lemma 7.5.1

If G contains a cycle, then in a planar embedding of G, the boundary of each face contains

a cycle.

Lemma 7.5.2

Let G be a planar embedding with p vertices and ¢ edges. If each face of G has degree at

least d, then
d(p —2)

q=< (d—2)

Theorem 7.5.3

In a planar graph G with p > 3 vertices and ¢ edges, we have

qg<3p—=06

Note on Theorem 7.5.3

If a graph does not satisfy the inequality, then it is not planar. However, the converse of

the theorem is not necessarily true.

Corollary 7.5.4

K35 is not planar.

Corollary 7.5.5

A planar graph has a vertex of degree at most five.

Theorem 7.5.6

In a bipartite planar graph G with p > 3 vertices and ¢ edges, we have

q<2p—4

Lemma 7.5.7

K33 is not planar.

7.6 Kuratowski’s Theorem

We can use graphs based on K5 and K33 to certify that a graph is not planar.

10



Edge Subdivision

An edge subdivision of a graph G is obtained by applying the following operation,
independently, to each edge of G: replace the edge by a path of length 1 or more. If the
path has length m > 1, then there are m — 1 new vertices and m — 1 new edges created.
If the path has length m = 1, then the edge is unchanged.

Note on Edge Subdivision

The operation of edge subdivision does not change planarity. If G is a planar graph, then
all edge subdivisions of G are planar. If G is nonplanar, then all edge subdivions of G are

nonplanar.

Theorem 7.6.1 (Kuratowski’s Theorem)

A graph is not planar if and only if it has a subgraph that is an edge subdivision of Kj
or K3’3
7.7 Colouring and Planar Graphs

k-colouring

A k-colouring of a graph G is a function from V(G) to a set of size k (whose elements

are called colours), so that adjacent vertices always have different colours.

k-colourable

A graph with a k-colouring is called a k-colourable graph.

Theorem 7.7.2

A graph is 2-colourable if and only if it is bipartite.

Theorem 7.7.3

K, is n-colourable, and not k-colourable for any k < n.

Theorem 7.7.4

Every planar graph is 6-colourable.

11



Edge Contraction

Let G be a graph and let e = xy be an edge of G. The graph G/e obtained from G by
contracting the edge e is the graph with vertex set V(G)\{z,y} U{z}, where z is a new

vertex, and edge set

{u,v} € E(G) : {u,v}n{z,y} = @}U{{u, 2z} : v & {z,y},{u,w} € E(G) for some w € {z,y}}

Intuitively, we can think of the operation of contracting e as allowing the length of e to
decrease to 0, so that the vertices x and y are identified into a new vertex z. Any other

vertex that was adjacent to one (or both) of z and y is adjacent to z in the new graph

G/e.

Theorem 7.7.6

Every planar graph is 5-colourable.

Theorem 7.7.7 (Four Colour Theorem)

Every planar graph is 4-colourable.

7.8 Dual Planar Maps

Properties about Dual Planar Maps

Let G* be the dual of a connected planar embedding GG
1. A face of degree k in G becomes a vertex of degree k in G*
2. A vertex of degree j in G becomes a face of degree j in G*
3. (G*)* and G are the same graph.
4. G* may be a multigraph rather than a graph.

5. The Four Colour Theorem for colouring vertices in planar graphs is equivalent to the

Four Colour Theorem for colouring faces in planar embeddings, via duality.

8.1 Matching

Matching

A matching in a graph G is a set M of edges of G such that no two edges in M have a

common end.

12



Saturated

We say that a vertex v of G is saturated by M, or that M saturates v, if v is incident

with an edge in M.

Maximum Matching

The largest matching in a graph G is called a maximum matching of G.

Perfect Matching

A matching that saturates every vertex is called a perfect matching.

Augmenting Path

An augmenting path with respect to M is an alternating path joining two distinct
vertices, neither of which is saturated by M. Note that augmenting paths have odd

length because they begin and end with non-matching edges.

Lemma 8.1.1

If M has an augmenting path, it is not a maximum matching.

8.2 Covers

Cover

A cover of a graph G is a set C' of vertices such that ever edge of G has at least one end
in C.

Lemma 8.2.1

If M is a matching of G and C' is a cover of G, then |M| < |C].

Lemma 8.2.2

If M is a matching of G and C'is a cover of G and |M| = |C/|, then M is a maximum
matching and C' is a minimum cover.
8.3 Konig’s Theorem

Theorem 8.3.1 (Ko6nig’s Theorem)

In a bipartite graph, the maximum size of a matching is the minimum size of a cover.

That is, if M is a maximum matching and C' is a minimum cover, then |M| = |C]|.

13



Bipartite Matching Algorithm (XY-Construction)

Given a bipartite graph G with bipartition (A, B), and a matching M of G.
1. Let X, be the est of all unsaturated vertices in A. Set X = Xy and Y = &.
2. For all neighbours of X in B currently not in Y.

(a) If one such vertex is unsaturated, then we have found an augmenting path.
Obtain a larger matching by swapping edges in the augmenting path. Go to
step 1.

(b) If all such vertices are saturated, then put all of them in Y. Add their matching
neighbours to X. Go to step 2.

(c) If no such vertices exist, then stop. Our matching is maximum with minimum
cover Y U (A\X).
8.4 Applications of Konig’s Theorem

Neighbour Set

For any subset D of vertices of a graph G, the neighbour set, N(D), is defined as the
set of all vertices v € V(G) such that there exists u € D with {u,v} € E(G). -

Theorem 8.4.1 (Hall’s Theorem)

A bipartite graph G with bipartition A, B has a matching saturating every vertex in A if
and only if every subset D of A satisfies

IN(D)| = |D|

8.6 Perfect Matching in Bipartite Graph

We can use Hall’s Theorem to obtain a condition for a bipartite graph to have a perfect

matching.

Corollary 8.6.1

A bipartite graph G with bipartition A, B has a perfect matching if and only if |A| = | B)|
and every subset D of A satisfies

IN(D)| = | D]

Theorem 8.6.2

If G is a k-regular bipartite graph with & > 1, then GG has a perfect matching.

14



Note

Theorem 8.6.2 works even if G contains multiple edges.
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